Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Samar Nour, S. Habashy, Sameh A. Salem
{"title":"Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems","authors":"Samar Nour, S. Habashy, Sameh A. Salem","doi":"10.5455/jjee.204-1669909560","DOIUrl":null,"url":null,"abstract":"Nowadays, embedded device applications have become partially correlated and can share platform resources. Cross-execution and sharing resources can cause memory access conflicts, especially in the Last Level Cache (LLC). LLC is a promising candidate for improving system performance on multicore embedded systems. It leads to a reduction in the number of high-latency main memory accesses. Currently, commercial devices can use cache partitioning. The software could better utilize the LLC and conserve energy by caching. This paper proposes a new energy-optimization model for embedded multicore systems based on a reconfigurable artificial neural network LLC architecture. The proposed model uses a machine-learning approach to express the reconfiguration of LLC, and can predict each task’s next interval LLC partitioning factor at runtime. The obtained experimental results reveal that the proposed model - compared to other algorithms - improves energy consumption by 28%, and gives 33% reduction in the LLC miss rate.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1669909560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, embedded device applications have become partially correlated and can share platform resources. Cross-execution and sharing resources can cause memory access conflicts, especially in the Last Level Cache (LLC). LLC is a promising candidate for improving system performance on multicore embedded systems. It leads to a reduction in the number of high-latency main memory accesses. Currently, commercial devices can use cache partitioning. The software could better utilize the LLC and conserve energy by caching. This paper proposes a new energy-optimization model for embedded multicore systems based on a reconfigurable artificial neural network LLC architecture. The proposed model uses a machine-learning approach to express the reconfiguration of LLC, and can predict each task’s next interval LLC partitioning factor at runtime. The obtained experimental results reveal that the proposed model - compared to other algorithms - improves energy consumption by 28%, and gives 33% reduction in the LLC miss rate.
基于机器学习的嵌入式系统高效缓存分区
如今,嵌入式设备应用已经实现了部分关联,可以共享平台资源。交叉执行和共享资源可能导致内存访问冲突,特别是在最后一级缓存(LLC)中。在多核嵌入式系统中,LLC是一种很有前途的提高系统性能的方法。它可以减少高延迟主内存访问的数量。目前,商用设备可以使用cache分区。该软件可以更好地利用LLC,并通过缓存来节约能源。提出了一种基于可重构人工神经网络LLC结构的嵌入式多核系统能量优化模型。该模型使用机器学习方法来表达LLC的重构,并能在运行时预测每个任务的下一个间隔LLC划分因子。实验结果表明,与其他算法相比,该模型的能耗降低了28%,LLC脱靶率降低了33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信