Deep Learning in Vehicle Detection Using ResUNet-a Architecture

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Z. Dorrani, H. Farsi, S. Mohamadzadeh
{"title":"Deep Learning in Vehicle Detection Using ResUNet-a Architecture","authors":"Z. Dorrani, H. Farsi, S. Mohamadzadeh","doi":"10.5455/jjee.204-1638861465","DOIUrl":null,"url":null,"abstract":"Vehicle detection is still a challenge in object detection. Although there are many related research achievements, there is still a room for improvement. In this context, this paper presents a method that utilizes the ResUNet-a architecture – that is characterized by its high accuracy - to extract features for improved vehicle detection performance. Edge detection is used on these features to reduce the number of calculations. The removal of shadows by combining color and contour features - for increased detection accuracy - is one of the advantages of the proposed method and it is a critical step in improving vehicle detection. The obtained results show that the proposed method can detect vehicles with an accuracy of 92.3%. This - in addition to the obtained F-measure and η values of 0.9264 and 0.8854, respectively - clearly state that the proposed method - which is based on deep learning and edge detection - creates a reasonable balance between speed and accuracy.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1638861465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle detection is still a challenge in object detection. Although there are many related research achievements, there is still a room for improvement. In this context, this paper presents a method that utilizes the ResUNet-a architecture – that is characterized by its high accuracy - to extract features for improved vehicle detection performance. Edge detection is used on these features to reduce the number of calculations. The removal of shadows by combining color and contour features - for increased detection accuracy - is one of the advantages of the proposed method and it is a critical step in improving vehicle detection. The obtained results show that the proposed method can detect vehicles with an accuracy of 92.3%. This - in addition to the obtained F-measure and η values of 0.9264 and 0.8854, respectively - clearly state that the proposed method - which is based on deep learning and edge detection - creates a reasonable balance between speed and accuracy.
基于reunet -a架构的车辆检测深度学习
车辆检测仍然是目标检测中的一个难题。虽然有很多相关的研究成果,但仍有改进的空间。在此背景下,本文提出了一种利用ResUNet-a架构提取特征以提高车辆检测性能的方法,该架构具有高精度的特点。在这些特征上使用边缘检测来减少计算次数。通过结合颜色和轮廓特征来去除阴影,以提高检测精度,是该方法的优点之一,也是改进车辆检测的关键步骤。实验结果表明,该方法检测车辆的准确率为92.3%。这-除了获得的F-measure值和η值分别为0.9264和0.8854 -清楚地表明,所提出的方法-基于深度学习和边缘检测-在速度和准确性之间建立了合理的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信