Formulation and evaluation of transdermal patch of rabeprazole sodium

IF 0.7 Q4 PHARMACOLOGY & PHARMACY
Manisha Soral, Shivakumar H. Nanjappa, Prajila Alayadan
{"title":"Formulation and evaluation of transdermal patch of rabeprazole sodium","authors":"Manisha Soral, Shivakumar H. Nanjappa, Prajila Alayadan","doi":"10.4103/jrptps.jrptps_126_20","DOIUrl":null,"url":null,"abstract":"Aim: The goal of the current study is to design and evaluate transdermal patches of rabeprazole sodium (RPS). Materials and Methods: Transdermal patches of RPS were prepared using polymers such as hydroxyl propyl cellulose (HPC-EF), polyvinyl pyrrolidone K-30 (PVP K-30), and polyvinyl pyrrolidone K-90 (PVP K-90) as film formers, polyethylene glycol (PEG-400) as a plasticizer, and Tween-80 and azone as permeation enhancers. The solvent casting technique was employed to develop the patches using aluminum foil as the backing membrane. These patches were evaluated for compatibility using Fourier transform infrared (FTIR) spectrophotometry and for content by ultraviolet (UV) spectrophotometry besides physicochemical properties such as thickness, adhesion, moisture content, moisture loss, and folding endurance. The patches were tested for in vitro release in United States Pharmacopoeia (USP) dissolution apparatus V and ex vivo permeation across shed snake skin in vertical Franz diffusion cell (FDC). Results: The characteristic FTIR spectra of RPS were also evident in the spectra of the patches, indicating drug-excipient compatibility. In vitro drug release indicated that the release of the drug was maximum from patches composed of HPC-EF (60.08±1.04%), which was much higher when compared with patches made of PVP K-30 (47.53±0.40%) and PVP K-90 (42.84±0.74%). The ex vivo permeation studies suggested that about 116.79±1.99 µg/cm2 of the drug was permeated in 24 h from formulation patches composed of HPC-EF that resulted in flux of nearly 7.06 µg/cm2/h. Conclusion: The studies indicated that feasibility of transdermal delivery of rabeprazole as a patch of 16 cm2 is likely to suffice the therapeutic requirement.","PeriodicalId":16966,"journal":{"name":"Journal of Reports in Pharmaceutical Sciences","volume":"1 1","pages":"240 - 246"},"PeriodicalIF":0.7000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reports in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jrptps.jrptps_126_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2

Abstract

Aim: The goal of the current study is to design and evaluate transdermal patches of rabeprazole sodium (RPS). Materials and Methods: Transdermal patches of RPS were prepared using polymers such as hydroxyl propyl cellulose (HPC-EF), polyvinyl pyrrolidone K-30 (PVP K-30), and polyvinyl pyrrolidone K-90 (PVP K-90) as film formers, polyethylene glycol (PEG-400) as a plasticizer, and Tween-80 and azone as permeation enhancers. The solvent casting technique was employed to develop the patches using aluminum foil as the backing membrane. These patches were evaluated for compatibility using Fourier transform infrared (FTIR) spectrophotometry and for content by ultraviolet (UV) spectrophotometry besides physicochemical properties such as thickness, adhesion, moisture content, moisture loss, and folding endurance. The patches were tested for in vitro release in United States Pharmacopoeia (USP) dissolution apparatus V and ex vivo permeation across shed snake skin in vertical Franz diffusion cell (FDC). Results: The characteristic FTIR spectra of RPS were also evident in the spectra of the patches, indicating drug-excipient compatibility. In vitro drug release indicated that the release of the drug was maximum from patches composed of HPC-EF (60.08±1.04%), which was much higher when compared with patches made of PVP K-30 (47.53±0.40%) and PVP K-90 (42.84±0.74%). The ex vivo permeation studies suggested that about 116.79±1.99 µg/cm2 of the drug was permeated in 24 h from formulation patches composed of HPC-EF that resulted in flux of nearly 7.06 µg/cm2/h. Conclusion: The studies indicated that feasibility of transdermal delivery of rabeprazole as a patch of 16 cm2 is likely to suffice the therapeutic requirement.
雷贝拉唑钠透皮贴剂的研制与评价
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Reports in Pharmaceutical Sciences
Journal of Reports in Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: The Journal of Reports in Pharmaceutical Sciences(JRPS) is a biannually peer-reviewed multi-disciplinary pharmaceutical publication to serve as a means for scientific information exchange in the international pharmaceutical forum. It accepts novel findings that contribute to advancement of scientific knowledge in pharmaceutical fields that not published or under consideration for publication anywhere else for publication in JRPS as original research article. all aspects of pharmaceutical sciences consist of medicinal chemistry, molecular modeling, drug design, pharmaceutics, biopharmacy, pharmaceutical nanotechnology, pharmacognosy, natural products, pharmaceutical biotechnology, pharmacology, toxicology and clinical pharmacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信