FEATURE LEVEL FUSION FRAMEWORK FOR BRAIN MR IMAGE CLASSIFICATION USING SUPERVISED DEEP LEARNING AND HAND CRAFTED FEATURES

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
P. N, Prashantha J
{"title":"FEATURE LEVEL FUSION FRAMEWORK FOR BRAIN MR IMAGE CLASSIFICATION USING SUPERVISED DEEP LEARNING AND HAND CRAFTED FEATURES","authors":"P. N, Prashantha J","doi":"10.5455/jjcit.71-1655376900","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient fusion framework for brain magnetic resonance (MR) image classification using deep learning and handcrafted feature extraction methods, namely histogram of oriented gradients (HOG) and local binary patterns (LBP). The proposed framework aims to: (1) determine the optimal handcrafted features by Genetic Algorithm (GA) (2) discover the fully connected (FC) layers features using fine-tuned convolutional neural network (CNN) (3) employs the canonical correlation analysis (CCA) and the discriminant correlation analysis (DCA) methods in feature level fusion. Extensive experiments were conducted and demonstrated the classification performance on three benchmark datasets, viz., RD-DB1, TCIA-IXI-DB2 and TWB-HM-DB3. The mean accuracy of 68.69%, 90.35%, and 93.15% from CCA and 77.22%, 100.00%, and 99.40% from DCA was achieved by the Support Vector Machines (SVM) sigmoid kernel classifier on RD-DB1, TCIA-IXI-DB2, and TWB-HM-DB3 respectively. The obtained results of the proposed framework outperform when compared with other state-of-art works.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjcit.71-1655376900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an efficient fusion framework for brain magnetic resonance (MR) image classification using deep learning and handcrafted feature extraction methods, namely histogram of oriented gradients (HOG) and local binary patterns (LBP). The proposed framework aims to: (1) determine the optimal handcrafted features by Genetic Algorithm (GA) (2) discover the fully connected (FC) layers features using fine-tuned convolutional neural network (CNN) (3) employs the canonical correlation analysis (CCA) and the discriminant correlation analysis (DCA) methods in feature level fusion. Extensive experiments were conducted and demonstrated the classification performance on three benchmark datasets, viz., RD-DB1, TCIA-IXI-DB2 and TWB-HM-DB3. The mean accuracy of 68.69%, 90.35%, and 93.15% from CCA and 77.22%, 100.00%, and 99.40% from DCA was achieved by the Support Vector Machines (SVM) sigmoid kernel classifier on RD-DB1, TCIA-IXI-DB2, and TWB-HM-DB3 respectively. The obtained results of the proposed framework outperform when compared with other state-of-art works.
基于监督深度学习和手工特征的脑磁共振图像分类特征融合框架
本文提出了一种基于深度学习和手工特征提取方法的脑磁共振图像分类融合框架,即定向梯度直方图(HOG)和局部二值模式(LBP)。该框架旨在:(1)通过遗传算法(GA)确定最优的手工特征;(2)使用微调卷积神经网络(CNN)发现全连接(FC)层特征;(3)在特征级融合中采用典型相关分析(CCA)和判别相关分析(DCA)方法。在RD-DB1、tcia - ix - db2和TWB-HM-DB3三个基准数据集上进行了大量实验,验证了分类性能。支持向量机(SVM) sigmoid核分类器在RD-DB1、TCIA-IXI-DB2和TWB-HM-DB3上对CCA的平均准确率分别为68.69%、90.35%和93.15%,对DCA的平均准确率分别为77.22%、100.00%和99.40%。与其他最先进的工作相比,所提出的框架获得的结果优于其他最先进的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Jordanian Journal of Computers and Information Technology
Jordanian Journal of Computers and Information Technology Computer Science-Computer Science (all)
CiteScore
3.10
自引率
25.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信