CONVOLUTIONAL NEURAL NETWORK MULTI-EMOTION CLASSIFIERS

IF 0.9 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Soha ElShafie, S. Ismail, K. Bahnasy, M. Aref
{"title":"CONVOLUTIONAL NEURAL NETWORK MULTI-EMOTION CLASSIFIERS","authors":"Soha ElShafie, S. Ismail, K. Bahnasy, M. Aref","doi":"10.5455/JJCIT.71-1555697775","DOIUrl":null,"url":null,"abstract":"The natural languages are universal and flexible but cannot exist without ambiguity. Having more than one attitude and meaning in the same phrase context is the main cause for word or phrase ambiguity. Most previous work on emotion analysis has only coverage single-label classification and neglect the presence of multiple emotion labels in one instance. This paper presents multi emotion classification in Twitter based on Convolutional Neural Networks (CNN). The applied features are emotion lexicons, word embeddings, and frequency distribution. The proposed networks performance is evaluated to state-of-the-art classification algorithms, achieving hamming score ranges from 0.46 to 0.52 on the challenging SemEval2018 Task E-c.","PeriodicalId":36757,"journal":{"name":"Jordanian Journal of Computers and Information Technology","volume":"27 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordanian Journal of Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/JJCIT.71-1555697775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

The natural languages are universal and flexible but cannot exist without ambiguity. Having more than one attitude and meaning in the same phrase context is the main cause for word or phrase ambiguity. Most previous work on emotion analysis has only coverage single-label classification and neglect the presence of multiple emotion labels in one instance. This paper presents multi emotion classification in Twitter based on Convolutional Neural Networks (CNN). The applied features are emotion lexicons, word embeddings, and frequency distribution. The proposed networks performance is evaluated to state-of-the-art classification algorithms, achieving hamming score ranges from 0.46 to 0.52 on the challenging SemEval2018 Task E-c.
卷积神经网络多情感分类器
自然语言具有通用性和灵活性,但也不能没有歧义。在同一短语语境中有多种态度和意义是造成词或短语歧义的主要原因。以往的情感分析工作大多只涉及单标签分类,而忽略了一个实例中多个情感标签的存在。本文提出了一种基于卷积神经网络(CNN)的Twitter多情绪分类方法。应用的特征是情感词汇、词嵌入和频率分布。提出的网络性能被评估为最先进的分类算法,在具有挑战性的SemEval2018任务E-c上达到了0.46到0.52的汉明分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Jordanian Journal of Computers and Information Technology
Jordanian Journal of Computers and Information Technology Computer Science-Computer Science (all)
CiteScore
3.10
自引率
25.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信