Cotton Growth and Yield Response to Short-Term Tillage Systems and Planting Date in North Carolina

IF 0.7 Q4 AGRICULTURAL ENGINEERING
T. Spivey, K. Edmisten, R. Wells, Deovina N. Jordan, J. Heitman, G. Wilkerson, T. Spivey, Deovina N. Jordan
{"title":"Cotton Growth and Yield Response to Short-Term Tillage Systems and Planting Date in North Carolina","authors":"T. Spivey, K. Edmisten, R. Wells, Deovina N. Jordan, J. Heitman, G. Wilkerson, T. Spivey, Deovina N. Jordan","doi":"10.56454/nfrm8991","DOIUrl":null,"url":null,"abstract":"Tillage practices, cover crops, and planting dates can influence soil moisture and temperature conditions at planting and cotton (Gossypium hirsutum L.) stand establishment and yield. A study was conducted in North Carolina at two locations from 2014 through 2016. Treatments included six tillage systems of fall and spring conventional raised beds and flat strip tillage planted in early and late May, with and without a wheat (Triticum aestivum L.) cover crop. Tillage treatments include conventional spring raised beds, fall strip till, stale seedbed, at-plant strip till, pre-plant strip till, and stale seedbed with at-plant strip till. Except for fall strip tillage, no tillage systems reduced plant populations compared to conventionally tilled cotton in any environment. Crop growth rates were similar in conventional and spring strip-till systems and were lower in four planting date environments with stale seedbeds. In 2016, in-row soil resistance was measured from 0- to 30-cm depth using a conical penetrometer both at planting and post-harvest. Plots without any spring tillage had the greatest soil resistance for all measurements and depths. All plots with spring tillage had similar soil resistance to at least the 15-cm depth from which point the conventional spring beds had the least soil resistance through the 30-cm profile. Late planted cotton in 2014 showed inconsistent yield differences among tillage systems between locations. When pooled over location and year for 2015 and 2016, however, tillage system did not influence cotton yield. These data indicate that cotton yields in reduced-till systems are comparable to cotton grown in conventional systems in North Carolina soils.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cotton science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56454/nfrm8991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Tillage practices, cover crops, and planting dates can influence soil moisture and temperature conditions at planting and cotton (Gossypium hirsutum L.) stand establishment and yield. A study was conducted in North Carolina at two locations from 2014 through 2016. Treatments included six tillage systems of fall and spring conventional raised beds and flat strip tillage planted in early and late May, with and without a wheat (Triticum aestivum L.) cover crop. Tillage treatments include conventional spring raised beds, fall strip till, stale seedbed, at-plant strip till, pre-plant strip till, and stale seedbed with at-plant strip till. Except for fall strip tillage, no tillage systems reduced plant populations compared to conventionally tilled cotton in any environment. Crop growth rates were similar in conventional and spring strip-till systems and were lower in four planting date environments with stale seedbeds. In 2016, in-row soil resistance was measured from 0- to 30-cm depth using a conical penetrometer both at planting and post-harvest. Plots without any spring tillage had the greatest soil resistance for all measurements and depths. All plots with spring tillage had similar soil resistance to at least the 15-cm depth from which point the conventional spring beds had the least soil resistance through the 30-cm profile. Late planted cotton in 2014 showed inconsistent yield differences among tillage systems between locations. When pooled over location and year for 2015 and 2016, however, tillage system did not influence cotton yield. These data indicate that cotton yields in reduced-till systems are comparable to cotton grown in conventional systems in North Carolina soils.
北卡罗来纳州棉花生长和产量对短期耕作制度和播种日期的响应
耕作方式、覆盖作物和种植日期可以影响种植和棉花(棉)立地建立和产量时的土壤湿度和温度条件。2014年至2016年,在北卡罗来纳州的两个地点进行了一项研究。处理包括6种耕作制度,分别为秋、春常规垄作和5月上下旬种植的平条耕作,覆盖作物有小麦和无小麦。耕作方法包括传统的春耕、秋耕、陈腐苗床、株内陈腐苗床、种前陈腐苗床和株内陈腐苗床。除了秋季的带状耕作外,在任何环境下,与传统耕作相比,免耕制度都减少了棉花的植物种群。常规带状耕作和春季带状耕作的作物生长速率相似,但在四种播种日期环境下,种子床陈旧,作物生长速率较低。2016年,在种植和收获后,使用锥形穿透仪测量了0至30厘米深度的行内土壤抗性。在所有测量值和深度上,未进行春耕的地块土壤阻力最大。所有春耕样地至少在15cm深度的土壤阻力相似,其中常规春耕畦在30cm剖面上的土壤阻力最小。2014年晚播棉花在不同耕作制度下的产量差异不一致。然而,当对2015年和2016年的地点和年份进行汇总时,耕作制度对棉花产量没有影响。这些数据表明,在北卡罗莱纳州土壤中,减少耕作系统的棉花产量与传统耕作系统的棉花产量相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cotton science
Journal of cotton science AGRICULTURAL ENGINEERING-
CiteScore
0.90
自引率
20.00%
发文量
0
期刊介绍: The multidisciplinary, refereed journal contains articles that improve our understanding of cotton science. Publications may be compilations of original research, syntheses, reviews, or notes on original research or new techniques or equipment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信