History and Progress in Cotton Breeding, Genetics, and Genomics in New Mexico

IF 0.7 Q4 AGRICULTURAL ENGINEERING
Jinfa Zhang
{"title":"History and Progress in Cotton Breeding, Genetics, and Genomics in New Mexico","authors":"Jinfa Zhang","doi":"10.56454/iayn2215","DOIUrl":null,"url":null,"abstract":"The New Mexico Cotton Breeding Program was established in 1926 and has been led by five generations of breeders. The program has released 37 Acala 1517 and one short-staple Upland cotton (Gossypium hirsutum L.) cultivars and numerous germplasm lines. Two Sea-Island G. barbadense L. cultivars have been released for production in the Mesilla Valley, NM. New Mexico germplasm has contributed to the development of 45% of the commercial cotton cultivars including almost all Acala cultivars in California, and has contributed to the improvement in fiber length and strength in U.S. cottons. Many Acala 1517 cultivars are tolerant or resistant to Verticillium wilt and bacterial blight. The recent releases include three transgenic Acala 1517 cultivars, one conventional and two glandless cultivars. The current research program focuses on fiber and seed quality (glandless) to develop elite germplasm with high yields and superior fiber quality and with resistance to Verticillium and Fusarium wilt, thrips, bacterial blight, leaf spot, cotton rust, and tolerance to drought and salinity. Upland × Pima introgression and development of the hybrid seed production system based on cytoplasmic male sterility and the haploid-producing system based on semigamy are also important aspects of the program. Extensive applications of genomic tools and approaches in the program include DNA marker and population development, linkage map construction, and quantitative trait locus mapping. In recent years, reduction in funding and lack of institutional support has hampered the program in delivering solutions to challenging issues such as Fusarium wilt race 4 faced by the cotton farmer.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cotton science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56454/iayn2215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 4

Abstract

The New Mexico Cotton Breeding Program was established in 1926 and has been led by five generations of breeders. The program has released 37 Acala 1517 and one short-staple Upland cotton (Gossypium hirsutum L.) cultivars and numerous germplasm lines. Two Sea-Island G. barbadense L. cultivars have been released for production in the Mesilla Valley, NM. New Mexico germplasm has contributed to the development of 45% of the commercial cotton cultivars including almost all Acala cultivars in California, and has contributed to the improvement in fiber length and strength in U.S. cottons. Many Acala 1517 cultivars are tolerant or resistant to Verticillium wilt and bacterial blight. The recent releases include three transgenic Acala 1517 cultivars, one conventional and two glandless cultivars. The current research program focuses on fiber and seed quality (glandless) to develop elite germplasm with high yields and superior fiber quality and with resistance to Verticillium and Fusarium wilt, thrips, bacterial blight, leaf spot, cotton rust, and tolerance to drought and salinity. Upland × Pima introgression and development of the hybrid seed production system based on cytoplasmic male sterility and the haploid-producing system based on semigamy are also important aspects of the program. Extensive applications of genomic tools and approaches in the program include DNA marker and population development, linkage map construction, and quantitative trait locus mapping. In recent years, reduction in funding and lack of institutional support has hampered the program in delivering solutions to challenging issues such as Fusarium wilt race 4 faced by the cotton farmer.
新墨西哥州棉花育种、遗传和基因组学的历史和进展
新墨西哥棉花育种计划成立于1926年,由五代育种家领导。该项目已经发布了37个Acala 1517和1个短绒陆地棉品种和许多种质品系。两个海岛巴巴多斯品种已在美国新墨西哥州的梅西拉谷投放生产。新墨西哥种质资源为45%的商品棉品种(包括加州几乎所有的Acala品种)的发展做出了贡献,并为美国棉花纤维长度和强度的提高做出了贡献。许多Acala 1517品种对黄萎病和细菌性枯萎病具有耐受性或抗性。最近发布的品种包括3个转基因品种、1个常规品种和2个无腺品种。目前的研究重点是纤维和种子质量(无腺体),以开发高产、优质纤维、抗黄萎病和枯萎病、蓟马、细菌性枯萎病、叶斑病、棉花锈病、耐干旱和耐盐的优质种质。旱地×皮马的遗传和基于细胞质雄性不育的杂交制种系统和基于半双染色体的单倍体生产系统的发展也是该计划的重要方面。基因组学工具和方法的广泛应用包括DNA标记和种群发展、连锁图谱构建和数量性状位点定位。近年来,资金的减少和机构支持的缺乏阻碍了该项目提供解决方案,以解决棉花农民面临的枯萎病等具有挑战性的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cotton science
Journal of cotton science AGRICULTURAL ENGINEERING-
CiteScore
0.90
自引率
20.00%
发文量
0
期刊介绍: The multidisciplinary, refereed journal contains articles that improve our understanding of cotton science. Publications may be compilations of original research, syntheses, reviews, or notes on original research or new techniques or equipment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信