A Non-uniform Concentration Inequality for Randomized Orthogonal Array Sampling Designs

IF 0.3 Q4 MATHEMATICS
K. Laipaporn, K. Neammanee
{"title":"A Non-uniform Concentration Inequality for Randomized Orthogonal Array Sampling Designs","authors":"K. Laipaporn, K. Neammanee","doi":"10.5539/JMR.V1N2P78","DOIUrl":null,"url":null,"abstract":"Let $ f : [0 ; 1]^3 \\rightarrow R$ be a measurable function. In many computer experiments, we estimate the value of $\\int _{[0,1]^3} f (x) dx$ , which is the mean $ \\mu = E ( f \\circ X ), where X is a uniform random vector on the unit hypercube $[0 ; 1]^3$ . In 1992 and 1993, Owen and Tang introduced randomized orthogonal arrays to choose the sampling points to estimate the integral. In this paper, we give a non-uniform concentration inequality for randomized orthogonal array sampling designs.","PeriodicalId":45664,"journal":{"name":"Thai Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2009-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5539/JMR.V1N2P78","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thai Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMR.V1N2P78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Let $ f : [0 ; 1]^3 \rightarrow R$ be a measurable function. In many computer experiments, we estimate the value of $\int _{[0,1]^3} f (x) dx$ , which is the mean $ \mu = E ( f \circ X ), where X is a uniform random vector on the unit hypercube $[0 ; 1]^3$ . In 1992 and 1993, Owen and Tang introduced randomized orthogonal arrays to choose the sampling points to estimate the integral. In this paper, we give a non-uniform concentration inequality for randomized orthogonal array sampling designs.
随机正交阵列抽样设计的非均匀浓度不等式
Let $ f: [0;1]^3 \右列R$是一个可测函数。在许多计算机实验中,我们估计$\int _{[0,1]^3} f (x) dx$的值,这是平均值$\ mu = E (f \circ x),其中x是单位超立方体$[0]上的均匀随机向量;1) ^ 3美元。1992年和1993年,Owen和Tang引入随机正交阵列来选择采样点来估计积分。本文给出了随机正交阵列抽样设计的非均匀浓度不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
0
期刊介绍: Thai Journal of Mathematics (TJM) is a peer-reviewed, open access international journal publishing original research works of high standard in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信