A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times

IF 1.3 Q4 ENGINEERING, INDUSTRIAL
Ingrid Simões Ferreira Maciel, B. Prata, M. S. Nagano, L. R. Abreu
{"title":"A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times","authors":"Ingrid Simões Ferreira Maciel, B. Prata, M. S. Nagano, L. R. Abreu","doi":"10.5267/j.jpm.2022.5.002","DOIUrl":null,"url":null,"abstract":"This study contributes to the hybrid flow shop due to a lack of consideration of characteristics existing in real-world problems. Prior studies are neglecting identical machines, explicit and sequence-dependent setup times, and machine blocking. We propose a hybrid genetic algorithm to solve the problem. Furthermore, we also propose a mixed-integer linear programming formulation. We note a predominance of the mathematical model for small instances, with five jobs and three machines because of how fast there is convergence. The objective function adopted is to minimize the makespan, and relative deviation is used as a performance criterion. Our proposal incorporates two metaheuristics in this process: a genetic algorithm to generate sequences (the flow shop subproblem) and a GRASP to allocate the jobs in the machines (the parallel machines subproblem). The extensive computational experience carried out shows that the proposed hybrid genetic algorithm is a promising procedure to solve large-sized instances.","PeriodicalId":42333,"journal":{"name":"Journal of Project Management","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Project Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.jpm.2022.5.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 3

Abstract

This study contributes to the hybrid flow shop due to a lack of consideration of characteristics existing in real-world problems. Prior studies are neglecting identical machines, explicit and sequence-dependent setup times, and machine blocking. We propose a hybrid genetic algorithm to solve the problem. Furthermore, we also propose a mixed-integer linear programming formulation. We note a predominance of the mathematical model for small instances, with five jobs and three machines because of how fast there is convergence. The objective function adopted is to minimize the makespan, and relative deviation is used as a performance criterion. Our proposal incorporates two metaheuristics in this process: a genetic algorithm to generate sequences (the flow shop subproblem) and a GRASP to allocate the jobs in the machines (the parallel machines subproblem). The extensive computational experience carried out shows that the proposed hybrid genetic algorithm is a promising procedure to solve large-sized instances.
基于混合遗传算法求解机器阻塞和时序依赖的混合流水车间调度问题
由于没有考虑到现实问题中存在的特点,本研究导致了混合流车间。先前的研究忽略了相同的机器,明确的和序列相关的设置时间,以及机器阻塞。我们提出了一种混合遗传算法来解决这个问题。此外,我们还提出了一个混合整数线性规划公式。我们注意到数学模型在小实例中的优势,有五个作业和三台机器,因为收敛速度非常快。采用的目标函数是最小化最大完工时间,并以相对偏差作为性能准则。我们的建议在这个过程中结合了两个元启发式算法:一个遗传算法来生成序列(流车间子问题)和一个GRASP来分配机器中的作业(并行机器子问题)。大量的计算经验表明,所提出的混合遗传算法是求解大型实例的一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
5.90%
发文量
16
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信