Ani Firda, A. Saggaff, Hanafiah Hanafiah, S. Saloma
{"title":"Experimental study of artificial lightweight aggregates using coal fly ash and epoxy resin","authors":"Ani Firda, A. Saggaff, Hanafiah Hanafiah, S. Saloma","doi":"10.5267/j.esm.2023.5.007","DOIUrl":null,"url":null,"abstract":"A lack of natural aggregates in the future is unavoidable, which generates issues for building development. For many industries, natural resources constitute a significant source of revenue. As a result, light artificial aggregate is produced to anticipate the decreasing source of natural aggregate. Production of artificial geopolymer aggregates, fly ash from the burning of coal has been proposed. This paper investigates the optimal proportion of epoxy resin and coal fly ash-based synthetic aggregates. The artificial aggregates are produced following specific gravity and compressive strength standards that may be used as a component of lightweight structural concrete (LWC). The production polymer lightweight aggregate (PLA) comes from a combination of coal fly ash and epoxy resin. The results show that PLA 50:50 to PLA 74:26 can be used for 6 hours to make structural concrete with a strength of more than 17 MPa. PLA 80:20 could achieve compressive strength with the range of 7-17 MPa. PLA 84:16 achieves a compressive strength range of 0.35 to 7 MPa and is utilized as a non-structural element. However, the flexural strength values in concrete LWC 70:30 and LWC 80:20 are higher, at 46.1% and 7.63%, respectively.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2023.5.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
A lack of natural aggregates in the future is unavoidable, which generates issues for building development. For many industries, natural resources constitute a significant source of revenue. As a result, light artificial aggregate is produced to anticipate the decreasing source of natural aggregate. Production of artificial geopolymer aggregates, fly ash from the burning of coal has been proposed. This paper investigates the optimal proportion of epoxy resin and coal fly ash-based synthetic aggregates. The artificial aggregates are produced following specific gravity and compressive strength standards that may be used as a component of lightweight structural concrete (LWC). The production polymer lightweight aggregate (PLA) comes from a combination of coal fly ash and epoxy resin. The results show that PLA 50:50 to PLA 74:26 can be used for 6 hours to make structural concrete with a strength of more than 17 MPa. PLA 80:20 could achieve compressive strength with the range of 7-17 MPa. PLA 84:16 achieves a compressive strength range of 0.35 to 7 MPa and is utilized as a non-structural element. However, the flexural strength values in concrete LWC 70:30 and LWC 80:20 are higher, at 46.1% and 7.63%, respectively.
期刊介绍:
Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.