Response surface methodology approach for optimized compressive strength of some mix design concrete aggregates from waste cockle shells and glass powder

Q2 Materials Science
S. Sugito, S. W. Alisjahbana, H. Riyanto
{"title":"Response surface methodology approach for optimized compressive strength of some mix design concrete aggregates from waste cockle shells and glass powder","authors":"S. Sugito, S. W. Alisjahbana, H. Riyanto","doi":"10.5267/j.esm.2022.2.005","DOIUrl":null,"url":null,"abstract":"Nowadays, with increased demand for aggregates for concrete and an awareness of the need of protecting natural resources, experts are becoming increasingly interested in waste material as a building material substitute. However, the compressive strength is influenced by the composition of concrete. In this study, the compressive strength of concrete under substitution using waste from cockle shells and glass was investigated using Response Surface Methodology (RSM). Central Composite Design (CCD) based on RSM was used to assess the influence of epoxy resin, cockle shells powder, and glass powder on compressive strength responses. RSM developed first-order and second-order mathematical models with findings from experimental design. Analysis of variance was used to determine the correctness of CCD's mathematical models. Desirability analysis was then employed to optimize epoxy resin, cockle shells powder, and glass powder yielding maximum compressive strength. The RSM analysis revealed that the empirical results fit well into linear and quadratic models of concrete compressive strength. The mixing components will produce cement with compressive strength in each formulation of 54.71 MPa (4.88% epoxy resin and 4.0% cockle shells powder), 47.82 MPa (6.85% epoxy resin and 8.0% glass powder), 147.0 MPa, (4% cockle shells powder and 8% glass powder), and 56.08 MPa (4.4% epoxy resin, 4.0% cockle shells powder, and 8.0% glass powder). The results confirmed that a reasonable compressive strength of concrete could be achieved using epoxy resin, cockle shells powder, and glass powder.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2022.2.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

Abstract

Nowadays, with increased demand for aggregates for concrete and an awareness of the need of protecting natural resources, experts are becoming increasingly interested in waste material as a building material substitute. However, the compressive strength is influenced by the composition of concrete. In this study, the compressive strength of concrete under substitution using waste from cockle shells and glass was investigated using Response Surface Methodology (RSM). Central Composite Design (CCD) based on RSM was used to assess the influence of epoxy resin, cockle shells powder, and glass powder on compressive strength responses. RSM developed first-order and second-order mathematical models with findings from experimental design. Analysis of variance was used to determine the correctness of CCD's mathematical models. Desirability analysis was then employed to optimize epoxy resin, cockle shells powder, and glass powder yielding maximum compressive strength. The RSM analysis revealed that the empirical results fit well into linear and quadratic models of concrete compressive strength. The mixing components will produce cement with compressive strength in each formulation of 54.71 MPa (4.88% epoxy resin and 4.0% cockle shells powder), 47.82 MPa (6.85% epoxy resin and 8.0% glass powder), 147.0 MPa, (4% cockle shells powder and 8% glass powder), and 56.08 MPa (4.4% epoxy resin, 4.0% cockle shells powder, and 8.0% glass powder). The results confirmed that a reasonable compressive strength of concrete could be achieved using epoxy resin, cockle shells powder, and glass powder.
用响应面法优化废螺壳和玻璃粉混合料设计混凝土的抗压强度
如今,随着混凝土骨料需求的增加和保护自然资源的意识的需要,专家们对废料作为建筑材料替代品越来越感兴趣。然而,抗压强度受混凝土组成的影响。本文采用响应面法(RSM)研究了用贝壳废料和玻璃废料替代混凝土的抗压强度。采用基于RSM的中心复合设计(CCD),研究了环氧树脂、贝壳粉和玻璃粉对结构抗压强度响应的影响。RSM根据实验设计的结果建立了一阶和二阶数学模型。采用方差分析来确定CCD数学模型的正确性。然后通过合宜性分析优化环氧树脂、贝壳粉和玻璃粉的最大抗压强度。RSM分析表明,试验结果符合混凝土抗压强度的线性和二次模型。混合组分生产的水泥抗压强度分别为54.71 MPa(4.88%环氧树脂、4.0%贝壳粉)、47.82 MPa(6.85%环氧树脂、8.0%玻璃粉)、147.0 MPa、4%贝壳粉、8%玻璃粉)和56.08 MPa(4.4%环氧树脂、4.0%贝壳粉、8.0%玻璃粉)。结果表明,采用环氧树脂、贝壳粉和玻璃粉可获得合理的混凝土抗压强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Solid Mechanics
Engineering Solid Mechanics Materials Science-Metals and Alloys
CiteScore
3.00
自引率
0.00%
发文量
21
期刊介绍: Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信