{"title":"Optimal design of four stage launch vehicle considering multi objective NSGA II algorithm and mass-energetic concepts","authors":"Hossein Sabaghzadeh, N. M. Khansari","doi":"10.5267/j.esm.2022.3.003","DOIUrl":null,"url":null,"abstract":"A solid fuel launch vehicle is a rocket with an engine that has been widely used in aerospace missions. Utilizing such launch vehicles depends on the simplicity of the manufacturing, maintenance, operation and development of the control systems. The purpose of optimization in solid fuel launch vehicles design is to find the best possible design for the mission with regard to the available equipment, constraints and infrastructures. Therefore, the main purpose of this research is to optimally design a launch vehicle for customized missions based on successful experiences, as well as technology, manufacturing capabilities and facilities. In this context, NSGA-II Intelligent Optimization Algorithm is considered based on multi-objective optimization principles and Mass-Energetic concepts. The optimal design of the launch vehicle is performed by applying intelligent algorithms and technological opportunities and limitations. The result showed that the present optimization method can design the launch vehicle based on technological limitations.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.esm.2022.3.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
A solid fuel launch vehicle is a rocket with an engine that has been widely used in aerospace missions. Utilizing such launch vehicles depends on the simplicity of the manufacturing, maintenance, operation and development of the control systems. The purpose of optimization in solid fuel launch vehicles design is to find the best possible design for the mission with regard to the available equipment, constraints and infrastructures. Therefore, the main purpose of this research is to optimally design a launch vehicle for customized missions based on successful experiences, as well as technology, manufacturing capabilities and facilities. In this context, NSGA-II Intelligent Optimization Algorithm is considered based on multi-objective optimization principles and Mass-Energetic concepts. The optimal design of the launch vehicle is performed by applying intelligent algorithms and technological opportunities and limitations. The result showed that the present optimization method can design the launch vehicle based on technological limitations.
期刊介绍:
Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.