{"title":"The impact of heat input on the mechanical properties and microstructure of High Strength Low Alloy steel welded joint by GMA welding process","authors":"S. Rizvi, R. Singh, S. Gupta","doi":"10.5267/J.ESM.2021.2.001","DOIUrl":null,"url":null,"abstract":"The basic aim of this study was to find a relationship between heat input and mechanical properties of high strength low alloy steel (HSLA) welded joints and also elaborate its effect on microstructure. The combined effect of welding current, voltage and speed i.e. Heat Input on mechanical properties of High Strength Low Alloy Steel (ASTM A242 type-II) weldments have been studied in the present work. HSLA steel work pieces were welded by Gas metal arc welding (GMAW) process under varying welding current, arc voltage, and welding speed. Total nine samples were prepared at different heat input level i.e. 1.872 kJ/mm, 1.9333 kJ/mm, 2.0114 kJ/mm, 2.1 kJ/mm, 2.1956 kJ/mm, 2.296 kJ/mm, 2.4 kJ/mm, 2.5067 kJ/mm and 2.6154 kJ/mm It was observed that as heat input increases the ultimate tensile strength and microhardness of weldment decreased while impact strength increased and it was also observed that on increasing the heat input grain size of microstructure tends to coarsening it is only due to decreasing in cooling rate.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/J.ESM.2021.2.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1
Abstract
The basic aim of this study was to find a relationship between heat input and mechanical properties of high strength low alloy steel (HSLA) welded joints and also elaborate its effect on microstructure. The combined effect of welding current, voltage and speed i.e. Heat Input on mechanical properties of High Strength Low Alloy Steel (ASTM A242 type-II) weldments have been studied in the present work. HSLA steel work pieces were welded by Gas metal arc welding (GMAW) process under varying welding current, arc voltage, and welding speed. Total nine samples were prepared at different heat input level i.e. 1.872 kJ/mm, 1.9333 kJ/mm, 2.0114 kJ/mm, 2.1 kJ/mm, 2.1956 kJ/mm, 2.296 kJ/mm, 2.4 kJ/mm, 2.5067 kJ/mm and 2.6154 kJ/mm It was observed that as heat input increases the ultimate tensile strength and microhardness of weldment decreased while impact strength increased and it was also observed that on increasing the heat input grain size of microstructure tends to coarsening it is only due to decreasing in cooling rate.
期刊介绍:
Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.