The impact of heat input on the mechanical properties and microstructure of High Strength Low Alloy steel welded joint by GMA welding process

Q2 Materials Science
S. Rizvi, R. Singh, S. Gupta
{"title":"The impact of heat input on the mechanical properties and microstructure of High Strength Low Alloy steel welded joint by GMA welding process","authors":"S. Rizvi, R. Singh, S. Gupta","doi":"10.5267/J.ESM.2021.2.001","DOIUrl":null,"url":null,"abstract":"The basic aim of this study was to find a relationship between heat input and mechanical properties of high strength low alloy steel (HSLA) welded joints and also elaborate its effect on microstructure. The combined effect of welding current, voltage and speed i.e. Heat Input on mechanical properties of High Strength Low Alloy Steel (ASTM A242 type-II) weldments have been studied in the present work. HSLA steel work pieces were welded by Gas metal arc welding (GMAW) process under varying welding current, arc voltage, and welding speed. Total nine samples were prepared at different heat input level i.e. 1.872 kJ/mm, 1.9333 kJ/mm, 2.0114 kJ/mm, 2.1 kJ/mm, 2.1956 kJ/mm, 2.296 kJ/mm, 2.4 kJ/mm, 2.5067 kJ/mm and 2.6154 kJ/mm It was observed that as heat input increases the ultimate tensile strength and microhardness of weldment decreased while impact strength increased and it was also observed that on increasing the heat input grain size of microstructure tends to coarsening it is only due to decreasing in cooling rate.","PeriodicalId":37952,"journal":{"name":"Engineering Solid Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Solid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/J.ESM.2021.2.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

The basic aim of this study was to find a relationship between heat input and mechanical properties of high strength low alloy steel (HSLA) welded joints and also elaborate its effect on microstructure. The combined effect of welding current, voltage and speed i.e. Heat Input on mechanical properties of High Strength Low Alloy Steel (ASTM A242 type-II) weldments have been studied in the present work. HSLA steel work pieces were welded by Gas metal arc welding (GMAW) process under varying welding current, arc voltage, and welding speed. Total nine samples were prepared at different heat input level i.e. 1.872 kJ/mm, 1.9333 kJ/mm, 2.0114 kJ/mm, 2.1 kJ/mm, 2.1956 kJ/mm, 2.296 kJ/mm, 2.4 kJ/mm, 2.5067 kJ/mm and 2.6154 kJ/mm It was observed that as heat input increases the ultimate tensile strength and microhardness of weldment decreased while impact strength increased and it was also observed that on increasing the heat input grain size of microstructure tends to coarsening it is only due to decreasing in cooling rate.
热输入对低合金钢GMA焊接接头力学性能和组织的影响
本研究的基本目的是找出高强度低合金钢(HSLA)焊接接头的热输入与力学性能之间的关系,并阐述其对显微组织的影响。本文研究了焊接电流、电压和速度(即热输入)对高强度低合金钢(ASTM A242 - ii型)焊接件力学性能的综合影响。在不同的焊接电流、电弧电压和焊接速度下,采用气体保护金属弧焊(GMAW)工艺对HSLA钢件进行了焊接。在1.872 kJ/mm、1.9333 kJ/mm、2.0114 kJ/mm、2.1 kJ/mm、2.1956 kJ/mm、2.296 kJ/mm、2.4 kJ/mm、2.5067 kJ/mm和2.6154 kJ/mm不同的热输入水平下制备了9个试样。结果表明,随着热输入的增加,焊件的极限抗拉强度和显微硬度降低,冲击强度增加;随着热输入的增加,组织晶粒尺寸趋于粗化,这只是由于冷却速度的降低所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Solid Mechanics
Engineering Solid Mechanics Materials Science-Metals and Alloys
CiteScore
3.00
自引率
0.00%
发文量
21
期刊介绍: Engineering Solid Mechanics (ESM) is an online international journal for publishing high quality peer reviewed papers in the field of theoretical and applied solid mechanics. The primary focus is to exchange ideas about investigating behavior and properties of engineering materials (such as metals, composites, ceramics, polymers, FGMs, rocks and concretes, asphalt mixtures, bio and nano materials) and their mechanical characterization (including strength and deformation behavior, fatigue and fracture, stress measurements, etc.) through experimental, theoretical and numerical research studies. Researchers and practitioners (from deferent areas such as mechanical and manufacturing, aerospace, railway, bio-mechanics, civil and mining, materials and metallurgy, oil, gas and petroleum industries, pipeline, marine and offshore sectors) are encouraged to submit their original, unpublished contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信