A multiscale approach for spatially inhomogeneous disease dynamics

Q2 Mathematics
M. Schmidtchen, O. Tse, Stephan Wackerle
{"title":"A multiscale approach for spatially inhomogeneous disease dynamics","authors":"M. Schmidtchen, O. Tse, Stephan Wackerle","doi":"10.5614/cbms.2018.1.2.1","DOIUrl":null,"url":null,"abstract":"In this paper we introduce an agent-based epidemiological model that generalizes the classical SIR model by Kermack and McKendrick. We further provide a multiscale approach to the derivation of a macroscopic counterpart via the mean-field limit. The chain of equations acquired via the multiscale approach are investigated, analytically as well as numerically. The outcome of these results provide strong evidence of the models' robustness and justifies their applicability in describing disease dynamics, in particularly when mobility is involved.","PeriodicalId":33129,"journal":{"name":"Communication in Biomathematical Sciences","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication in Biomathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/cbms.2018.1.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we introduce an agent-based epidemiological model that generalizes the classical SIR model by Kermack and McKendrick. We further provide a multiscale approach to the derivation of a macroscopic counterpart via the mean-field limit. The chain of equations acquired via the multiscale approach are investigated, analytically as well as numerically. The outcome of these results provide strong evidence of the models' robustness and justifies their applicability in describing disease dynamics, in particularly when mobility is involved.
空间非均匀疾病动力学的多尺度方法
本文介绍了一种基于主体的流行病学模型,它对Kermack和McKendrick的经典SIR模型进行了推广。我们进一步提供了通过平均场极限推导宏观对应的多尺度方法。通过多尺度方法得到的方程链进行了分析和数值研究。这些结果的结果为模型的稳健性提供了强有力的证据,并证明了它们在描述疾病动力学方面的适用性,特别是当涉及到移动性时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communication in Biomathematical Sciences
Communication in Biomathematical Sciences Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信