Shear Capacity Analysis of Steel Reinforced Lightweight Concrete Elements Based on The Bond Strength

IF 0.8 Q4 ENGINEERING, CIVIL
Jianwen Zhang, Yin ZHANG, Chen Gao, Mengke SHI
{"title":"Shear Capacity Analysis of Steel Reinforced Lightweight Concrete Elements Based on The Bond Strength","authors":"Jianwen Zhang, Yin ZHANG, Chen Gao, Mengke SHI","doi":"10.56748/ejse.223243","DOIUrl":null,"url":null,"abstract":"Push-out tests of steel reinforced lightweight concrete(SRLC) were carried out for nine specimens which were designed according to the orthogonal test method considering four influence factors including strength of lightweight aggregate concrete, stirrup ratio, thickness of protective layer and anchorage length. The curves of average bond stress and loading-end slip were drawn, the characteristics of split failure and push-out failure were analyzed, and the characteristic bond strength was obtained. Combined with the test results of other scholars on the ultimate bond strength of steel reinforced concrete(SRC), it is found that the bond strength of SRLC is not worse than that of normal concrete(NC) which can be taken the same as 0.5MPa. Then the obtained bond strength can be used to calculate the shear strength of SRLC elements which may occur two forms of shear failure-diagonal shear failure and shear bond failure, however, shear bond failure is ignored in some specifications. Shear bond failure capacity computational formula of SRLC elements is deduced into which the bond strength is introduced.To verify the reasonability and accuracy of the proposed approach, the shear capacity and failure pattern are predicted by the proposed means with previous test results and are also compared with other provisions. The analyses and calculations indicate that the proposed method can accurately predict the shear failure mode and the calculated shear capacity values are in better agreement with the experimental results.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":"27 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.223243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Push-out tests of steel reinforced lightweight concrete(SRLC) were carried out for nine specimens which were designed according to the orthogonal test method considering four influence factors including strength of lightweight aggregate concrete, stirrup ratio, thickness of protective layer and anchorage length. The curves of average bond stress and loading-end slip were drawn, the characteristics of split failure and push-out failure were analyzed, and the characteristic bond strength was obtained. Combined with the test results of other scholars on the ultimate bond strength of steel reinforced concrete(SRC), it is found that the bond strength of SRLC is not worse than that of normal concrete(NC) which can be taken the same as 0.5MPa. Then the obtained bond strength can be used to calculate the shear strength of SRLC elements which may occur two forms of shear failure-diagonal shear failure and shear bond failure, however, shear bond failure is ignored in some specifications. Shear bond failure capacity computational formula of SRLC elements is deduced into which the bond strength is introduced.To verify the reasonability and accuracy of the proposed approach, the shear capacity and failure pattern are predicted by the proposed means with previous test results and are also compared with other provisions. The analyses and calculations indicate that the proposed method can accurately predict the shear failure mode and the calculated shear capacity values are in better agreement with the experimental results.
基于粘结强度的钢筋轻混凝土构件抗剪承载力分析
考虑轻骨料混凝土强度、配箍比、保护层厚度、锚固长度等4个影响因素,采用正交试验法设计了9个钢配轻混凝土试件,进行了钢配轻混凝土的推拔试验。绘制了平均粘结应力和加载端滑移曲线,分析了劈裂破坏和推出破坏的特征,得到了特征粘结强度。结合其他学者对钢筋混凝土(SRC)极限粘结强度的试验结果,发现SRC的粘结强度不低于普通混凝土(NC),可取0.5MPa。得到的粘结强度可用于计算SRLC单元的抗剪强度,单元可能出现两种形式的剪切破坏——斜剪破坏和剪切粘结破坏,但在某些规范中忽略了剪切粘结破坏。推导了SRLC单元的剪切破坏能力计算公式,并引入了粘结强度。为了验证该方法的合理性和准确性,将该方法与前人的试验结果进行了对比,并与其他规定进行了比较。分析和计算表明,该方法能较准确地预测剪切破坏模式,计算的抗剪承载力值与试验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Structural Engineering
Electronic Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信