{"title":"Generation of BKV-Specific T Cells for Adoptive Therapy against BKV Nephropathy","authors":"Jongming Li, B. Mookerjee, Priya Singh, J. Wagner","doi":"10.4137/VRT.S942","DOIUrl":null,"url":null,"abstract":"Nephropathy associated with BK virus has emerged as an important cause of allograft failure in renal transplant recipients. Here we exploited a recently developed novel monocyte based solid phase T cell selection system, in which monocytes are immobilized on solid support, for antigen-specific T cell purification. The underlying hypothesis of this new method is that antigen-specific T cells recognize, bind their cognate antigens faster than non-specific T cells and are concentrated on the surface after removing the non-adherent cells by washing. Moreover, activated antigen-specific T cells proliferate more rapidly than non-specific T cells, further increasing the frequency and purity of antigen-specific T cells. Optimal selection times for BK virus-specific T cells are studied. Our data demonstrated that T cell selection can usually increase the frequency of antigen-specific T cells by > 10 fold, whereas T cell expansion following the selection boost the frequency of antigen-specific T cells by another ~10 fold. This new T cell selection system is superior to traditional stimulation method (i.e. simply mixing antigen presenting cells and lymphocytes together) in generating antigen-specific T cells. This inexpensive and simple T cell selection system can produce large quantity of highly purified BK virus-specific T cells within 1–2 weeks after initial T cell activation.","PeriodicalId":39174,"journal":{"name":"Virology: Research and Treatment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/VRT.S942","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology: Research and Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/VRT.S942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
Nephropathy associated with BK virus has emerged as an important cause of allograft failure in renal transplant recipients. Here we exploited a recently developed novel monocyte based solid phase T cell selection system, in which monocytes are immobilized on solid support, for antigen-specific T cell purification. The underlying hypothesis of this new method is that antigen-specific T cells recognize, bind their cognate antigens faster than non-specific T cells and are concentrated on the surface after removing the non-adherent cells by washing. Moreover, activated antigen-specific T cells proliferate more rapidly than non-specific T cells, further increasing the frequency and purity of antigen-specific T cells. Optimal selection times for BK virus-specific T cells are studied. Our data demonstrated that T cell selection can usually increase the frequency of antigen-specific T cells by > 10 fold, whereas T cell expansion following the selection boost the frequency of antigen-specific T cells by another ~10 fold. This new T cell selection system is superior to traditional stimulation method (i.e. simply mixing antigen presenting cells and lymphocytes together) in generating antigen-specific T cells. This inexpensive and simple T cell selection system can produce large quantity of highly purified BK virus-specific T cells within 1–2 weeks after initial T cell activation.