{"title":"Silicon-Based Mode Converter and Demultiplexer for Wavelength Division Multiplexing Transmission by Using Multimode Interference Couplers","authors":"Yong Zhou, Junqiang Sun","doi":"10.4236/opj.2020.106012","DOIUrl":null,"url":null,"abstract":"We present a mode converter and demultiplexer structure for wavelength division multiplexing (WDM) transmission by employing multimode interference (MMI) on Silicon-on-Insulator (SOI) platform. The mode converter and demultiplexer have a compact size of less than 2.7 μm × 43.7 μm. Moreover, the crosstalk between neighboring wavelength channel within C band (1530 nm to 1570 nm) can be reduced by utilizing the tapered phase shifter cascaded with MMI. The simulated results indicate that this structure has a low insertion loss of less than 1 dB, a low crosstalk of better than ?15 dB and a relatively high fabrication tolerance of ~10 nm. Such structure may find many potential applications in silicon photonic integrated devices.","PeriodicalId":64491,"journal":{"name":"光学与光子学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学与光子学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/opj.2020.106012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We present a mode converter and demultiplexer structure for wavelength division multiplexing (WDM) transmission by employing multimode interference (MMI) on Silicon-on-Insulator (SOI) platform. The mode converter and demultiplexer have a compact size of less than 2.7 μm × 43.7 μm. Moreover, the crosstalk between neighboring wavelength channel within C band (1530 nm to 1570 nm) can be reduced by utilizing the tapered phase shifter cascaded with MMI. The simulated results indicate that this structure has a low insertion loss of less than 1 dB, a low crosstalk of better than ?15 dB and a relatively high fabrication tolerance of ~10 nm. Such structure may find many potential applications in silicon photonic integrated devices.