Organic-Exchanged Silicotungstic Acid Compounds as Efficient and Environmental-Friendly Catalysts for Synthesis of Glycerol Monolaurate

IF 0.6 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
Li Ran Li Ran, Deng Yunli Deng Yunli, Wu Siliang Wu Siliang, Liao Jiayi Liao Jiayi, Tang Xiujuan Tang Xiujuan, Han Xiaoxiang Han Xiaoxiang
{"title":"Organic-Exchanged Silicotungstic Acid Compounds as Efficient and Environmental-Friendly Catalysts for Synthesis of Glycerol Monolaurate","authors":"Li Ran Li Ran, Deng Yunli Deng Yunli, Wu Siliang Wu Siliang, Liao Jiayi Liao Jiayi, Tang Xiujuan Tang Xiujuan, Han Xiaoxiang Han Xiaoxiang","doi":"10.52568/001244/jcsp/45.03.2023","DOIUrl":null,"url":null,"abstract":"A series of organic-exchanged silicotungstic acid catalysts were synthesized by changing the variety and amount of organic compounds. The structure, thermal stability and acidic properties of the catalysts were characterized by FT-IR, XRD, TGA and 31P-MAS NMR. The catalytic performances of the catalysts were investigated on the selective esterification of lauric acid with glycerol to glycerol monolaurate. Among the various catalysts, [QuH]1H3SiW12O40 with molar ratio of quinoline to silicotungstic acid of 1:1 showed excellent activity and reusability due to strong Brand#248;nsted acidity and “pseudo-liquid” catalytic modes. The optimal conditions optimized by response surface methodology were as follows: the molar ratio of glycerol to lauric acid was 5.3:1, the amount of catalyst was 4.8 wt%, the reaction temperature was 424 K, and the reaction time was 1.5 h. Under these conditions, the average yield of glycerol monolaurate was 79.7%, which was basically consistent with the values predicted by the mathematical model. Moreover, the kinetic data of this reaction were fitted to a second-order kinetic model and the apparent activation energy Ea was 52.35 kJ / mol","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001244/jcsp/45.03.2023","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A series of organic-exchanged silicotungstic acid catalysts were synthesized by changing the variety and amount of organic compounds. The structure, thermal stability and acidic properties of the catalysts were characterized by FT-IR, XRD, TGA and 31P-MAS NMR. The catalytic performances of the catalysts were investigated on the selective esterification of lauric acid with glycerol to glycerol monolaurate. Among the various catalysts, [QuH]1H3SiW12O40 with molar ratio of quinoline to silicotungstic acid of 1:1 showed excellent activity and reusability due to strong Brand#248;nsted acidity and “pseudo-liquid” catalytic modes. The optimal conditions optimized by response surface methodology were as follows: the molar ratio of glycerol to lauric acid was 5.3:1, the amount of catalyst was 4.8 wt%, the reaction temperature was 424 K, and the reaction time was 1.5 h. Under these conditions, the average yield of glycerol monolaurate was 79.7%, which was basically consistent with the values predicted by the mathematical model. Moreover, the kinetic data of this reaction were fitted to a second-order kinetic model and the apparent activation energy Ea was 52.35 kJ / mol
有机交换硅钨酸化合物作为合成单月桂酸甘油的高效环保催化剂
通过改变有机化合物的种类和用量,合成了一系列有机交换硅钨酸催化剂。采用FT-IR、XRD、TGA和31P-MAS NMR对催化剂的结构、热稳定性和酸性进行了表征。考察了催化剂对月桂酸与甘油选择性酯化制单月桂酸甘油的催化性能。在各种催化剂中,喹啉与硅钨酸摩尔比为1:1的[QuH]1H3SiW12O40由于具有较强的Brand#248;nsted酸性和“伪液体”催化模式,表现出优异的活性和可重复使用性。通过响应面法优化得到的最佳工艺条件为:甘油与月桂酸的摩尔比为5.3:1,催化剂用量为4.8 wt%,反应温度为424 K,反应时间为1.5 h。在此条件下,单月桂酸甘油的平均产率为79.7%,与数学模型预测值基本一致。反应的动力学数据符合二级动力学模型,表观活化能Ea为52.35 kJ / mol
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
41
审稿时长
3.4 months
期刊介绍: This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信