{"title":"Approximate Inertial Manifold for a Class of the Kirchhoff Wave Equations with Nonlinear Strongly Damped Terms","authors":"Chengfei Ai, Huixian Zhu, Guoguang Lin","doi":"10.4236/IJMNTA.2016.54020","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the smoothing effect of the solution, we make efficient use of the analytic property of the semigroup generated by the principal operator of the equation in the phase space. Then we obtain the regularity of the global attractor and construct the approximate inertial manifold of the equation. Finally, we prove that arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of the approximate inertial manifold after large time.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2016.54020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the smoothing effect of the solution, we make efficient use of the analytic property of the semigroup generated by the principal operator of the equation in the phase space. Then we obtain the regularity of the global attractor and construct the approximate inertial manifold of the equation. Finally, we prove that arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of the approximate inertial manifold after large time.