{"title":"Time-Frequency and Nonlinear Analysis of Tidal Data Observed on the Kuroshio Path","authors":"K. Kirimoto","doi":"10.4236/IJMNTA.2016.54015","DOIUrl":null,"url":null,"abstract":"The tidal data of Kushimoto and Uragami on flow path of Kuroshio from 2004 to 2005 are investigated and discussed by time-frequency methods and nonlinear methods in this paper. These analyzing methods based on mathematical science show us new findings about the tidal motion observed on Kuroshio flow path. On the time-frequency analysis, 12 hours component and 24 hours component swing during the period of 350 hours and 320 hours respectively. However, any remarkable differences or changes depending on Kuroshio flow path weren’t seen on the result of time-frequency analysis. On the nonlinear analysis, a periodical structure has seen on the mutual information of tidal difference data, while Kuroshio flow is stable. In addition, the mutual information showed a characteristic of randomness and irregularity, while Kuroshio flow is unstable. The important results brought us a new finding such as classification of tidal motion regardless of the flow path of Kuroshio.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"05 1","pages":"147-159"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2016.54015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The tidal data of Kushimoto and Uragami on flow path of Kuroshio from 2004 to 2005 are investigated and discussed by time-frequency methods and nonlinear methods in this paper. These analyzing methods based on mathematical science show us new findings about the tidal motion observed on Kuroshio flow path. On the time-frequency analysis, 12 hours component and 24 hours component swing during the period of 350 hours and 320 hours respectively. However, any remarkable differences or changes depending on Kuroshio flow path weren’t seen on the result of time-frequency analysis. On the nonlinear analysis, a periodical structure has seen on the mutual information of tidal difference data, while Kuroshio flow is stable. In addition, the mutual information showed a characteristic of randomness and irregularity, while Kuroshio flow is unstable. The important results brought us a new finding such as classification of tidal motion regardless of the flow path of Kuroshio.