{"title":"Conventional and Added-Order Proportional Nonlinear Integral Observers","authors":"Baishun Liu, Xiang-Qian Luo, Jian-Hui Li","doi":"10.4236/IJMNTA.2014.35023","DOIUrl":null,"url":null,"abstract":"In this paper, a kind of fire new nonlinear integrator and integral action is proposed. Consequently, a conventional Proportional Nonlinear Integral (P_NI) observer and two kinds of added-order P_NI observers are developed to deal with the uncertain nonlinear system. The conditions on the observer gains to ensure the estimated error to be ultimate boundness, which shrinks to zero as the states and control inputs converge to the equilibrium point, are provided. This means that if the observed system is asymptotically stable, the estimated error dynamics is asymptotically stable, too. Moreover, the highlight point of this paper is that the design of nonlinear integral observer is achieved by linear system theory. Simulation results showed that under the normal and perturbed cases, the pure added-order P_NI observer can effectively deal with the uncertain nonlinearities on both the system dynamics and measured outputs.","PeriodicalId":69680,"journal":{"name":"现代非线性理论与应用(英文)","volume":"36 1","pages":"210-220"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代非线性理论与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/IJMNTA.2014.35023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, a kind of fire new nonlinear integrator and integral action is proposed. Consequently, a conventional Proportional Nonlinear Integral (P_NI) observer and two kinds of added-order P_NI observers are developed to deal with the uncertain nonlinear system. The conditions on the observer gains to ensure the estimated error to be ultimate boundness, which shrinks to zero as the states and control inputs converge to the equilibrium point, are provided. This means that if the observed system is asymptotically stable, the estimated error dynamics is asymptotically stable, too. Moreover, the highlight point of this paper is that the design of nonlinear integral observer is achieved by linear system theory. Simulation results showed that under the normal and perturbed cases, the pure added-order P_NI observer can effectively deal with the uncertain nonlinearities on both the system dynamics and measured outputs.