Graphene-based nanocomposites: An efficient detoxification agent for heavy metal removal from wastewater

IF 0.5 4区 工程技术 Q4 CHEMISTRY, APPLIED
S. Verma, Shivani Verma, T. Das, B. Verma
{"title":"Graphene-based nanocomposites: An efficient detoxification agent for heavy metal removal from wastewater","authors":"S. Verma, Shivani Verma, T. Das, B. Verma","doi":"10.56042/ijct.v30i4.63284","DOIUrl":null,"url":null,"abstract":"Numerous scientific and technological developments in wastewater treatment procedures are brought on by the shortage of clean water supplies. Heavy metals' recalcitrance in wastewater has been shown to be a difficult issue. Further, drinking water quality must be at its highest for human health to be at its best; nevertheless, a number of human activities are continuously degrading it, which has an effect on human health either directly or indirectly. Because heavy metals are the primary causes of many chronic illnesses and have a tendency to bio accumulate, they are giving rise to a lot of worries. Technologies from all over the world are being developed to address the demand for clean drinking water. The objective of the current study is to raise awareness of the need to remove dangerous dense metals from various types of wastewater and the application of modified graphene nanocomposite for their adsorption-based removal. Graphene-based nanocomposite materials have been picked for this application due to their large surface area, superior mechanical strength, and reactivity towards polar and nonpolar contaminants for the electrostatic emission of the heavy metal ions arsenic (As)","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.56042/ijct.v30i4.63284","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Numerous scientific and technological developments in wastewater treatment procedures are brought on by the shortage of clean water supplies. Heavy metals' recalcitrance in wastewater has been shown to be a difficult issue. Further, drinking water quality must be at its highest for human health to be at its best; nevertheless, a number of human activities are continuously degrading it, which has an effect on human health either directly or indirectly. Because heavy metals are the primary causes of many chronic illnesses and have a tendency to bio accumulate, they are giving rise to a lot of worries. Technologies from all over the world are being developed to address the demand for clean drinking water. The objective of the current study is to raise awareness of the need to remove dangerous dense metals from various types of wastewater and the application of modified graphene nanocomposite for their adsorption-based removal. Graphene-based nanocomposite materials have been picked for this application due to their large surface area, superior mechanical strength, and reactivity towards polar and nonpolar contaminants for the electrostatic emission of the heavy metal ions arsenic (As)
石墨烯基纳米复合材料:一种去除废水中重金属的高效解毒剂
由于清洁水供应的短缺,污水处理程序的许多科学和技术发展。重金属在废水中的顽固性已被证明是一个难题。此外,饮用水质量必须达到最高水平,才能使人类健康处于最佳状态;然而,一些人类活动正在不断地使其退化,从而直接或间接地对人类健康产生影响。由于重金属是许多慢性疾病的主要原因,并且具有生物积累的倾向,因此它们引起了许多担忧。世界各地都在开发技术,以满足对清洁饮用水的需求。本研究的目的是提高人们对从各种类型的废水中去除危险重金属的必要性的认识,以及改性石墨烯纳米复合材料在吸附基去除中的应用。由于石墨烯基纳米复合材料具有较大的表面积、优异的机械强度和对极性和非极性污染物的反应性,可以静电发射重金属离子砷(As),因此被选中用于该应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Chemical Technology
Indian Journal of Chemical Technology 工程技术-工程:化工
CiteScore
0.90
自引率
20.00%
发文量
17
审稿时长
6-12 weeks
期刊介绍: Indian Journal of Chemical Technology has established itself as the leading journal in the exciting field of chemical engineering and technology. It is intended for rapid communication of knowledge and experience to engineers and scientists working in the area of research development or practical application of chemical technology. This bimonthly journal includes novel and original research findings as well as reviews in the areas related to – Chemical Engineering, Catalysis, Leather Processing, Polymerization, Membrane Separation, Pharmaceuticals and Drugs, Agrochemicals, Reaction Engineering, Biochemical Engineering, Petroleum Technology, Corrosion & Metallurgy and Applied Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信