Analyzing speech in both time and space: Generalized additive mixed models can uncover systematic patterns of variation in vocal tract shape in real-time MRI

IF 1.3 2区 文学 0 LANGUAGE & LINGUISTICS
C. Carignan, P. Hoole, E. Kunay, M. Pouplier, Arun A. Joseph, Dirk Voit, J. Frahm, J. Harrington
{"title":"Analyzing speech in both time and space: Generalized additive mixed models can uncover systematic patterns of variation in vocal tract shape in real-time MRI","authors":"C. Carignan, P. Hoole, E. Kunay, M. Pouplier, Arun A. Joseph, Dirk Voit, J. Frahm, J. Harrington","doi":"10.5334/labphon.214","DOIUrl":null,"url":null,"abstract":"We present a method of using generalized additive mixed models (GAMMs) to analyze midsagittal vocal tract data obtained from real-time magnetic resonance imaging (rt-MRI) video of speech production. Applied to rt-MRI data, GAMMs allow for observation of factor effects on vocal tract shape throughout two key dimensions: time (vocal tract change over the temporal course of a speech segment) and space (location of change within the vocal tract). Examples of this method are provided for rt-MRI data collected at a temporal resolution of 20 ms and a spatial resolution of 1.41 mm, for 36 native speakers of German. The rt-MRI data were quantified as 28-point semi-polar-grid aperture functions. Three test cases are provided as a way of observing vocal tract differences between: (1) /aː/ and /iː/, (2) /aː/ and /aɪ/, and (3) accentuated and unstressed /aː/. The results for each GAMM are independently validated using functional linear mixed models (FLMMs) constructed from data obtained at 20% and 80% of the vowel interval. In each case, the two methods yield similar results. In light of the method similarities, we propose that GAMMs are a robust, powerful, and interpretable method of simultaneously analyzing both temporal and spatial effects in rt-MRI video of speech.","PeriodicalId":45128,"journal":{"name":"Laboratory Phonology","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Phonology","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.5334/labphon.214","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 20

Abstract

We present a method of using generalized additive mixed models (GAMMs) to analyze midsagittal vocal tract data obtained from real-time magnetic resonance imaging (rt-MRI) video of speech production. Applied to rt-MRI data, GAMMs allow for observation of factor effects on vocal tract shape throughout two key dimensions: time (vocal tract change over the temporal course of a speech segment) and space (location of change within the vocal tract). Examples of this method are provided for rt-MRI data collected at a temporal resolution of 20 ms and a spatial resolution of 1.41 mm, for 36 native speakers of German. The rt-MRI data were quantified as 28-point semi-polar-grid aperture functions. Three test cases are provided as a way of observing vocal tract differences between: (1) /aː/ and /iː/, (2) /aː/ and /aɪ/, and (3) accentuated and unstressed /aː/. The results for each GAMM are independently validated using functional linear mixed models (FLMMs) constructed from data obtained at 20% and 80% of the vowel interval. In each case, the two methods yield similar results. In light of the method similarities, we propose that GAMMs are a robust, powerful, and interpretable method of simultaneously analyzing both temporal and spatial effects in rt-MRI video of speech.
在时间和空间上分析语音:广义加性混合模型可以在实时MRI中揭示声道形状变化的系统模式
我们提出了一种使用广义加性混合模型(GAMMs)来分析语音生成实时磁共振成像(rt-MRI)视频中获得的中矢状声道数据的方法。将GAMMs应用于rt-MRI数据,可以通过两个关键维度观察声道形状的因素影响:时间(语音片段的时间过程中的声道变化)和空间(声道内变化的位置)。以时间分辨率为20 ms,空间分辨率为1.41 mm的36名德语母语者的rt-MRI数据为例,给出了该方法的示例。rt-MRI数据量化为28点半极栅孔径函数。提供了三个测试用例来观察声道差异:(1)/a / /和/i / /, (2) /a / /和/a / /,(3)重音和非重音/a / /。每个GAMM的结果都使用功能线性混合模型(flmm)独立验证,该模型由在20%和80%的元音间隔处获得的数据构建。在每种情况下,这两种方法产生相似的结果。鉴于方法的相似性,我们提出GAMMs是一种鲁棒的、强大的、可解释的方法,可以同时分析语音rt-MRI视频中的时间和空间效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
6.70%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信