Elham Gholam, Seyed Reza Kamel Tabbakh, M. Khairabadi
{"title":"Diagnosis of Gastric Cancer via Classification of the Tongue Images using Deep\n Convolutional Networks","authors":"Elham Gholam, Seyed Reza Kamel Tabbakh, M. Khairabadi","doi":"10.52547/jist.9.35.191","DOIUrl":null,"url":null,"abstract":"Gastric cancer is the second most common cancer worldwide, responsible for the death of many people in society. One of the issues regarding this disease is the absence of early and accurate detection. In the medical industry, gastric cancer is diagnosed by conducting numerous tests and imagings, which are costly and time-consuming. Therefore, doctors are seeking a cost-effective and time-efficient alternative. One of the medical solutions is Chinese medicine and diagnosis by observing changes of the tongue. Detecting the disease using tongue appearance and color of various sections of the tongue is one of the key components of traditional Chinese medicine. In this study, a method is presented which can carry out the localization of tongue surface regardless of the different poses of people in images. In fact, if the localization of face components, especially the mouth, is done correctly, the components leading to the biggest distinction in the dataset can be used which is favorable in terms of time and space complexity. Also, since we have the best estimation, the best features can be extracted relative to those components and the best possible accuracy can be achieved in this situation. The extraction of appropriate features in this study is done using deep convolutional neural networks. Finally, we use the random forest algorithm to train the proposed model and evaluate the criteria. Experimental results show that the average classification accuracy has reached approximately 73.78 which demonstrates the superiority of the proposed method compared to other methods.","PeriodicalId":37681,"journal":{"name":"Journal of Information Systems and Telecommunication","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Systems and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/jist.9.35.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric cancer is the second most common cancer worldwide, responsible for the death of many people in society. One of the issues regarding this disease is the absence of early and accurate detection. In the medical industry, gastric cancer is diagnosed by conducting numerous tests and imagings, which are costly and time-consuming. Therefore, doctors are seeking a cost-effective and time-efficient alternative. One of the medical solutions is Chinese medicine and diagnosis by observing changes of the tongue. Detecting the disease using tongue appearance and color of various sections of the tongue is one of the key components of traditional Chinese medicine. In this study, a method is presented which can carry out the localization of tongue surface regardless of the different poses of people in images. In fact, if the localization of face components, especially the mouth, is done correctly, the components leading to the biggest distinction in the dataset can be used which is favorable in terms of time and space complexity. Also, since we have the best estimation, the best features can be extracted relative to those components and the best possible accuracy can be achieved in this situation. The extraction of appropriate features in this study is done using deep convolutional neural networks. Finally, we use the random forest algorithm to train the proposed model and evaluate the criteria. Experimental results show that the average classification accuracy has reached approximately 73.78 which demonstrates the superiority of the proposed method compared to other methods.
期刊介绍:
This Journal will emphasize the context of the researches based on theoretical and practical implications of information Systems and Telecommunications. JIST aims to promote the study and knowledge investigation in the related fields. The Journal covers technical, economic, social, legal and historic aspects of the rapidly expanding worldwide communications and information industry. The journal aims to put new developments in all related areas into context, help readers broaden their knowledge and deepen their understanding of telecommunications policy and practice. JIST encourages submissions that reflect the wide and interdisciplinary nature of the subject and articles that integrate technological disciplines with social, contextual and management issues. JIST is planned to build particularly its reputation by publishing qualitative researches and it welcomes such papers. This journal aims to disseminate success stories, lessons learnt, and best practices captured by researchers in the related fields.