Post-functionalization of Ether-linked Polymer via the Application of Ullmann-coupling Reaction: Synthesis, Characterization and Thermal Degradation Kinetics

IF 0.4 Q4 CHEMISTRY, MULTIDISCIPLINARY
{"title":"Post-functionalization of Ether-linked Polymer via the Application of Ullmann-coupling Reaction: Synthesis, Characterization and Thermal Degradation Kinetics","authors":"","doi":"10.47014/16.1.3","DOIUrl":null,"url":null,"abstract":"A new ether-linked polymer (PE-A) was synthesized via the polycondensation of 1,4-dibromo-2,5-difluorobenzene with biphenol (A). The new polymer has shown a good solubility in non-polar solvents, as well as moderate thermal stability (up to 300 °C). The parent PE-A was subjected to post-functionalization modification applying the Ullmann-coupling reaction on the C-Br bonds of PE-A, where the bromo-sites have been replaced by aniline-linked moieties. The resulting polymer (PE-Ani-A) shows slight solubility in several solvents. Its thermal stability was enhanced by 36% when compared with PE-A. To ensure the significant impact of the inclusion of the aniline group on thermal stability, a thermal degradation kinetics study was performed and the Coats-Redfren and Broido theoretical models were applied to explore the degradation process. The calculated activation energy for PE-Ani-A degradation was thereby found to be higher than that of PE-A, which indicates the higher thermal stability of PE-Ani-A. For further insights into the thermal stability of the polymers, the limited oxygen index (LOI), which represents the flame-retardant property of the polymers, was calculated. The results indicate that PE-A is a promising candidate as a flame-retardant polymer (LOI = 46.7), since it has a high bromo-content. On the other hand, PE-Ani-A has a lower LOI although it has a higher thermal stability.","PeriodicalId":14654,"journal":{"name":"Jordan Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47014/16.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

A new ether-linked polymer (PE-A) was synthesized via the polycondensation of 1,4-dibromo-2,5-difluorobenzene with biphenol (A). The new polymer has shown a good solubility in non-polar solvents, as well as moderate thermal stability (up to 300 °C). The parent PE-A was subjected to post-functionalization modification applying the Ullmann-coupling reaction on the C-Br bonds of PE-A, where the bromo-sites have been replaced by aniline-linked moieties. The resulting polymer (PE-Ani-A) shows slight solubility in several solvents. Its thermal stability was enhanced by 36% when compared with PE-A. To ensure the significant impact of the inclusion of the aniline group on thermal stability, a thermal degradation kinetics study was performed and the Coats-Redfren and Broido theoretical models were applied to explore the degradation process. The calculated activation energy for PE-Ani-A degradation was thereby found to be higher than that of PE-A, which indicates the higher thermal stability of PE-Ani-A. For further insights into the thermal stability of the polymers, the limited oxygen index (LOI), which represents the flame-retardant property of the polymers, was calculated. The results indicate that PE-A is a promising candidate as a flame-retardant polymer (LOI = 46.7), since it has a high bromo-content. On the other hand, PE-Ani-A has a lower LOI although it has a higher thermal stability.
应用ullmann偶联反应的醚连接聚合物的后功能化:合成、表征和热降解动力学
以1,4-二溴-2,5-二氟苯与双酚(A)缩聚合成了一种新型醚连接聚合物(PE-A)。该聚合物在非极性溶剂中具有良好的溶解度,并且具有中等的热稳定性(高达300℃)。在PE-A的C-Br键上应用ullmann偶联反应对母体PE-A进行了后功能化修饰,其中溴位点被苯胺连接的基团取代。所得聚合物(PE-Ani-A)在几种溶剂中具有轻微的溶解度。与PE-A相比,热稳定性提高了36%。为了确保苯胺基团的加入对热稳定性的显著影响,进行了热降解动力学研究,并应用Coats-Redfren和Broido理论模型来探索降解过程。由此计算出PE-Ani-A的降解活化能要高于PE-A,说明PE-Ani-A具有更高的热稳定性。为了进一步了解聚合物的热稳定性,计算了代表聚合物阻燃性能的限氧指数(LOI)。结果表明,PE-A具有较高的溴含量,是一种很有前途的阻燃聚合物(LOI = 46.7)。另一方面,PE-Ani-A具有较低的LOI,尽管它具有较高的热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Jordan Journal of Chemistry
Jordan Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
0.50
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信