sbv IMPROVER Diagnostic Signature Challenge

R. Norel, E. Bilal, Nathalie Conrad-Chemineau, Richard Bonneau, A. G. de la Fuente, I. Jurisica, D. Marbach, Pablo Meyer, J. Rice, T. Tuller, G. Stolovitzky
{"title":"sbv IMPROVER Diagnostic Signature Challenge","authors":"R. Norel, E. Bilal, Nathalie Conrad-Chemineau, Richard Bonneau, A. G. de la Fuente, I. Jurisica, D. Marbach, Pablo Meyer, J. Rice, T. Tuller, G. Stolovitzky","doi":"10.4161/sysb.26326","DOIUrl":null,"url":null,"abstract":"Evaluating the performance of computational methods to analyze high throughput data are an integral component of model development and critical to progress in computational biology. In collaborative-competitions, model performance evaluation is crucial to determine the best performing submission. Here we present the scoring methodology used to assess 54 submissions to the IMPROVER Diagnostic Signature Challenge. Participants were tasked with classifying patients’ disease phenotype based on gene expression data in four disease areas: Psoriasis, Chronic Obstructive Pulmonary Disease, Lung Cancer, and Multiple Sclerosis. We discuss the criteria underlying the choice of the three scoring metrics we chose to assess the performance of the submitted models. The statistical significance of the difference in performance between individual submissions and classification tasks varied according to these different metrics. Accordingly, we consider an aggregation of these three assessment methods and present the approaches considered for aggregating the ranking and ultimately determining the final overall best performer.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"1 1","pages":"208 - 216"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.26326","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.26326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Evaluating the performance of computational methods to analyze high throughput data are an integral component of model development and critical to progress in computational biology. In collaborative-competitions, model performance evaluation is crucial to determine the best performing submission. Here we present the scoring methodology used to assess 54 submissions to the IMPROVER Diagnostic Signature Challenge. Participants were tasked with classifying patients’ disease phenotype based on gene expression data in four disease areas: Psoriasis, Chronic Obstructive Pulmonary Disease, Lung Cancer, and Multiple Sclerosis. We discuss the criteria underlying the choice of the three scoring metrics we chose to assess the performance of the submitted models. The statistical significance of the difference in performance between individual submissions and classification tasks varied according to these different metrics. Accordingly, we consider an aggregation of these three assessment methods and present the approaches considered for aggregating the ranking and ultimately determining the final overall best performer.
sbv improved诊断签名挑战
评估分析高通量数据的计算方法的性能是模型开发的一个组成部分,对计算生物学的进步至关重要。在协作竞赛中,模型性能评估是确定最佳表现的关键。在这里,我们提出了用于评估54份提交给IMPROVER诊断签名挑战的评分方法。参与者的任务是根据四个疾病领域的基因表达数据对患者的疾病表型进行分类:牛皮癣、慢性阻塞性肺病、肺癌和多发性硬化症。我们讨论了我们选择用来评估所提交模型的性能的三个评分指标的基本选择标准。单个提交和分类任务之间性能差异的统计显著性根据这些不同的度量而变化。因此,我们考虑了这三种评估方法的汇总,并提出了用于汇总排名并最终确定最终整体最佳表现的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信