Genomic and network analysis to study the origin of ovarian cancer

Ye Tian, Li Chen, Bai Zhang, Zhen Zhang, Guoqiang Yu, R. Clarke, J. Xuan, I. Shih, Yue Wang
{"title":"Genomic and network analysis to study the origin of ovarian cancer","authors":"Ye Tian, Li Chen, Bai Zhang, Zhen Zhang, Guoqiang Yu, R. Clarke, J. Xuan, I. Shih, Yue Wang","doi":"10.4161/sysb.25313","DOIUrl":null,"url":null,"abstract":"Characterizing the origin of high-grade serous ovarian cancer has significant practical importance for advancing biological knowledge and improving clinical treatments. Rapid advances in molecular profiling technologies and machine learning based data analytics provide new opportunities to investigate this important question using data-driven approaches at the molecular and network levels. We now report novel analytic results in assessing the origin of high-grade serous ovarian carcinoma. Using genome-wide gene expression data and effective machine learning approaches, we design proper statistical significance tests and perform both genomic and network analyses to discriminate among three possible origins. The experimental results are consistent with recent scientific hypothesis and independent findings.","PeriodicalId":90057,"journal":{"name":"Systems biomedicine (Austin, Tex.)","volume":"1 1","pages":"55 - 64"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4161/sysb.25313","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biomedicine (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4161/sysb.25313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Characterizing the origin of high-grade serous ovarian cancer has significant practical importance for advancing biological knowledge and improving clinical treatments. Rapid advances in molecular profiling technologies and machine learning based data analytics provide new opportunities to investigate this important question using data-driven approaches at the molecular and network levels. We now report novel analytic results in assessing the origin of high-grade serous ovarian carcinoma. Using genome-wide gene expression data and effective machine learning approaches, we design proper statistical significance tests and perform both genomic and network analyses to discriminate among three possible origins. The experimental results are consistent with recent scientific hypothesis and independent findings.
基因组和网络分析研究卵巢癌的起源
明确高级别浆液性卵巢癌的起源对提高生物学知识和改善临床治疗具有重要的现实意义。分子分析技术和基于机器学习的数据分析的快速发展为在分子和网络水平上使用数据驱动方法研究这一重要问题提供了新的机会。我们现在报告新的分析结果在评估高级别浆液性卵巢癌的起源。利用全基因组基因表达数据和有效的机器学习方法,我们设计了适当的统计显著性检验,并进行了基因组和网络分析,以区分三种可能的起源。实验结果与最近的科学假设和独立发现相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信