Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio [after Ambrosio, DiPerna, Lions]

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Camillo De Lellis
{"title":"Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio [after Ambrosio, DiPerna, Lions]","authors":"Camillo De Lellis","doi":"10.5167/UZH-21441","DOIUrl":null,"url":null,"abstract":"In a seminal paper of almost 20 years ago, R.J. DiPerna and P.-L. Lions initiated the theory of renormalized solutions to study the well-posedness of Ordinary Differential Equations and Transport Equations with discontinuous coefficients. In a recent work L. Ambrosio solved the long-standing open problem of extending this theory to BV coefficients, the most common functional-analytic closure of classical functions with jump discontinuities. Besides its intrinsic interest, Ambrosio's Theorem has been used to solve relevant problems in Partial Differential Equations and it opened the way to a series of new questions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5167/UZH-21441","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

In a seminal paper of almost 20 years ago, R.J. DiPerna and P.-L. Lions initiated the theory of renormalized solutions to study the well-posedness of Ordinary Differential Equations and Transport Equations with discontinuous coefficients. In a recent work L. Ambrosio solved the long-standing open problem of extending this theory to BV coefficients, the most common functional-analytic closure of classical functions with jump discontinuities. Besides its intrinsic interest, Ambrosio's Theorem has been used to solve relevant problems in Partial Differential Equations and it opened the way to a series of new questions.
粗糙系数常微分方程与Ambrosio的重整化定理[源自Ambrosio, DiPerna, Lions]
在近20年前的一篇开创性论文中,R.J.迪珀纳和p.l。狮子开创了重整化解理论,以研究具有不连续系数的常微分方程和输运方程的适定性。在最近的工作中,L. Ambrosio解决了将该理论扩展到BV系数的长期开放问题,BV系数是具有跳跃不连续的经典函数的最常见的泛函解析闭包。安布罗西奥定理除了其固有的兴趣外,还被用于解决偏微分方程中的相关问题,并为一系列新问题开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信