Automatic identification of academic articles in Japanese PDF files

IF 0.1 4区 管理学 Q4 INFORMATION SCIENCE & LIBRARY SCIENCE
Teru Agata, Atsushi Ikeuchi, Emi Ishita, Michiko Nozue, T. Kuno, S. Ueda
{"title":"Automatic identification of academic articles in Japanese PDF files","authors":"Teru Agata, Atsushi Ikeuchi, Emi Ishita, Michiko Nozue, T. Kuno, S. Ueda","doi":"10.46895/lis.56.43","DOIUrl":null,"url":null,"abstract":"As open-access becomes common, many researchers deposit their research products in a publicly accessible web (i.e. self-archiving). Although they are accessible from general search engines, massive other contents tend to hide them. The purpose of this research is to identify academic articles or quasi-articles from the entire web automatically. In this paper we conduct experiments on the performance of various classifiers and compare in terms of precision, recall, F-value. The classifiers used such attributes as terms appeared in PDF files and empirical rules. The diverse performance of each classifier discloses its characteristics.","PeriodicalId":42468,"journal":{"name":"Library and Information Science","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Library and Information Science","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.46895/lis.56.43","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 3

Abstract

As open-access becomes common, many researchers deposit their research products in a publicly accessible web (i.e. self-archiving). Although they are accessible from general search engines, massive other contents tend to hide them. The purpose of this research is to identify academic articles or quasi-articles from the entire web automatically. In this paper we conduct experiments on the performance of various classifiers and compare in terms of precision, recall, F-value. The classifiers used such attributes as terms appeared in PDF files and empirical rules. The diverse performance of each classifier discloses its characteristics.
日语PDF文件学术文章的自动识别
随着开放获取的普及,许多研究人员将他们的研究成果存放在一个可公开访问的网络上(即自存档)。虽然它们可以从一般的搜索引擎中访问,但大量的其他内容往往会隐藏它们。本研究的目的是自动从整个网络中识别学术文章或准文章。在本文中,我们对各种分类器的性能进行了实验,并在精度、召回率、f值等方面进行了比较。分类器使用PDF文件和经验规则中出现的术语等属性。每种分类器的不同性能揭示了其特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Library and Information Science
Library and Information Science INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
0.10
自引率
40.00%
发文量
0
期刊介绍: Library and Information Science is the official journal of the Mita Society for Library and Information Science. It is issued semiannually and prepared by the Editorial Committee of the Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信