A Dynamic Programming Approach for the Max-Min Cycle Packing Problem in Even Graphs

P. Recht
{"title":"A Dynamic Programming Approach for the Max-Min Cycle Packing Problem in Even Graphs","authors":"P. Recht","doi":"10.4236/OJDM.2016.64027","DOIUrl":null,"url":null,"abstract":"Let be an undirected graph. The maximum cycle packing problem in G then is to find a collection of edge-disjoint cycles Ciin G such that s is maximum. In general, the maximum cycle packing problem is NP-hard. In this paper, it is shown for even graphs that if such a collection satisfies the condition that it minimizes the quantityon the set of all edge-disjoint cycle collections, then it is a maximum cycle packing. The paper shows that the determination of such a packing can be solved by a dynamic programming approach. For its solution, an-shortest path procedure on an appropriate acyclic networkis presented. It uses a particular monotonous node potential.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"06 1","pages":"340-350"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2016.64027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let be an undirected graph. The maximum cycle packing problem in G then is to find a collection of edge-disjoint cycles Ciin G such that s is maximum. In general, the maximum cycle packing problem is NP-hard. In this paper, it is shown for even graphs that if such a collection satisfies the condition that it minimizes the quantityon the set of all edge-disjoint cycle collections, then it is a maximum cycle packing. The paper shows that the determination of such a packing can be solved by a dynamic programming approach. For its solution, an-shortest path procedure on an appropriate acyclic networkis presented. It uses a particular monotonous node potential.
偶图中最大-最小循环布局问题的动态规划方法
设它是一个无向图。那么G中的最大环填充问题就是在G中找到一组边不相交的环,使得s是最大值。一般来说,最大循环填充问题是np困难的。本文证明了对于偶图,如果这样一个集合满足使所有边不相交的循环集合的数量最小的条件,则它是一个最大循环填充。本文表明,这种布局的确定可以用动态规划方法来解决。为了求解该问题,给出了一个合适的非循环网络上的最短路径过程。它使用一个特定的单调节点电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信