{"title":"An Alternative Proof of the Largest Number of Maximal Independent Sets in Connected Graphs Having at Most Two Cycles","authors":"Min-Jen Jou, Jenq-Jong Lin","doi":"10.4236/OJDM.2016.64019","DOIUrl":null,"url":null,"abstract":"G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum number of maximal independent sets in connected graphs which contain at most two cycles. In this paper, we give an alternative proof to determine the largest number of maximal independent sets among all connected graphs of order n ≥ 12, which contain at most two cycles. We also characterize the extremal graph achieving this maximum value.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"06 1","pages":"227-237"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2016.64019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum number of maximal independent sets in connected graphs which contain at most two cycles. In this paper, we give an alternative proof to determine the largest number of maximal independent sets among all connected graphs of order n ≥ 12, which contain at most two cycles. We also characterize the extremal graph achieving this maximum value.