{"title":"Understanding Model Independent Genetic Mutations through Trends in Increase in Entropy","authors":"Sage Copling, Maansi Srinivasan, Preet Sharma","doi":"10.4236/ojbiphy.2022.123007","DOIUrl":null,"url":null,"abstract":"Introduction: A mutation, in general, can be defined as a change in the genetic sequence. Mutations can be changes as small as the substitution of a single DNA building block, or nucleotide base, with another nucleotide base. There can be larger mutations which can affect many genes on a chromo-some. In this study we have tried to understand a normal mutation and a failed mutation from the point of view of entropy. We have shown that the entropy range of a normal mutation is less compared to the entropy range of a failed mutation. In this article we have plotted the increase of entropy of both types of mutations mentioned above. Statistical Physics of Partition Function and Entropy: In this section we have used statistical physics to de-fine the partition function of an ensemble. Based on the partition function we have expressed how to calculate physical quantities such as average energy and entropy. Model Independent Mutation Entropy: The entropy of all processes increases. This is true even for biological systems. We have shown the difference between the entropy of a successful mutation and a failed mutation. Conclusion: In conclusion we have shown how the entropy of a successful mutation differs from that of a failed mutation. This opens up future research opportunities where we can apply this to specific biological systems.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物物理学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojbiphy.2022.123007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: A mutation, in general, can be defined as a change in the genetic sequence. Mutations can be changes as small as the substitution of a single DNA building block, or nucleotide base, with another nucleotide base. There can be larger mutations which can affect many genes on a chromo-some. In this study we have tried to understand a normal mutation and a failed mutation from the point of view of entropy. We have shown that the entropy range of a normal mutation is less compared to the entropy range of a failed mutation. In this article we have plotted the increase of entropy of both types of mutations mentioned above. Statistical Physics of Partition Function and Entropy: In this section we have used statistical physics to de-fine the partition function of an ensemble. Based on the partition function we have expressed how to calculate physical quantities such as average energy and entropy. Model Independent Mutation Entropy: The entropy of all processes increases. This is true even for biological systems. We have shown the difference between the entropy of a successful mutation and a failed mutation. Conclusion: In conclusion we have shown how the entropy of a successful mutation differs from that of a failed mutation. This opens up future research opportunities where we can apply this to specific biological systems.