Muhammad Rusyadi Ramli, Riesa Krisna Astuti Sakir, Dong-Seong Kim
{"title":"Fog-based Intelligent Transportation System for Traffic Light Optimization","authors":"Muhammad Rusyadi Ramli, Riesa Krisna Astuti Sakir, Dong-Seong Kim","doi":"10.53560/ppasa(58-sp1)730","DOIUrl":null,"url":null,"abstract":"This paper presents fog-based intelligent transportation systems (ITS) architecture for traffic light optimization. Specifically, each intersection consists of traffic lights equipped with a fog node. The roadside unit (RSU) node is deployed to monitor the traffic condition and transmit it to the fog node. The traffic light center (TLC) is used to collect the traffic condition from the fog nodes of all intersections. In this work, two traffic light optimization problems are addressed where each problem will be processed either on fog node or TLC according to their requirements. First, the high latency for the vehicle to decide the dilemma zone is addressed. In the dilemma zone, the vehicle may hesitate whether to accelerate or decelerate that can lead to traffic accidents if the decision is not taken quickly. This first problem is processed on the fog node since it requires a real-time process to accomplish. Second, the proposed architecture aims each intersection aware of its adjacent traffic condition. Thus, the TLC is used to estimate the total incoming number of vehicles based on the gathered information from all fog nodes of each intersection. The results show that the proposed fog-based ITS architecture has better performance in terms of network latency compared to the existing solution in which relies only on TLC.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(58-sp1)730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents fog-based intelligent transportation systems (ITS) architecture for traffic light optimization. Specifically, each intersection consists of traffic lights equipped with a fog node. The roadside unit (RSU) node is deployed to monitor the traffic condition and transmit it to the fog node. The traffic light center (TLC) is used to collect the traffic condition from the fog nodes of all intersections. In this work, two traffic light optimization problems are addressed where each problem will be processed either on fog node or TLC according to their requirements. First, the high latency for the vehicle to decide the dilemma zone is addressed. In the dilemma zone, the vehicle may hesitate whether to accelerate or decelerate that can lead to traffic accidents if the decision is not taken quickly. This first problem is processed on the fog node since it requires a real-time process to accomplish. Second, the proposed architecture aims each intersection aware of its adjacent traffic condition. Thus, the TLC is used to estimate the total incoming number of vehicles based on the gathered information from all fog nodes of each intersection. The results show that the proposed fog-based ITS architecture has better performance in terms of network latency compared to the existing solution in which relies only on TLC.