Climbing the Steiner Tree--Sources of Active Information in a Genetic Algorithm for Solving the Euclidean Steiner Tree Problem

W. Ewert, W. Dembski, R. Marks
{"title":"Climbing the Steiner Tree--Sources of Active Information in a Genetic Algorithm for Solving the Euclidean Steiner Tree Problem","authors":"W. Ewert, W. Dembski, R. Marks","doi":"10.5048/BIO-C.2012.1","DOIUrl":null,"url":null,"abstract":"Genetic algorithms are widely cited as demonstrating the power of natural selection to produce biological complexity. In particular, the success of such search algorithms is said to show that intelligent design has no scientific value. Despite their merits, genetic algorithms establish nothing of the sort. Such algorithms succeed not through any intrinsic prop- erty of the search algorithm, but rather through incorporating sources of information derived from the programmer’s prior knowledge. A genetic algorithm used to defend the efficacy of natural selection is Thomas’s Steiner tree algorithm. This paper tracks the various sources of information incorporated into Thomas’s algorithm. Rather than creating informa- tion from scratch, the algorithm incorporates resident information by restricting the set of solutions considered, introducing selection skew to increase the power of selection, and adopting a structure that facilitates fortuitous crossover. Thomas’s algorithm, far from exhibiting the power of natural selection, merely demonstrates that an intelligent agent, in this case a human programmer, possesses the ability to incorporate into such algorithms the information necessary for successful search.","PeriodicalId":89660,"journal":{"name":"BIO-complexity","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIO-complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5048/BIO-C.2012.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Genetic algorithms are widely cited as demonstrating the power of natural selection to produce biological complexity. In particular, the success of such search algorithms is said to show that intelligent design has no scientific value. Despite their merits, genetic algorithms establish nothing of the sort. Such algorithms succeed not through any intrinsic prop- erty of the search algorithm, but rather through incorporating sources of information derived from the programmer’s prior knowledge. A genetic algorithm used to defend the efficacy of natural selection is Thomas’s Steiner tree algorithm. This paper tracks the various sources of information incorporated into Thomas’s algorithm. Rather than creating informa- tion from scratch, the algorithm incorporates resident information by restricting the set of solutions considered, introducing selection skew to increase the power of selection, and adopting a structure that facilitates fortuitous crossover. Thomas’s algorithm, far from exhibiting the power of natural selection, merely demonstrates that an intelligent agent, in this case a human programmer, possesses the ability to incorporate into such algorithms the information necessary for successful search.
攀爬斯坦纳树——求解欧几里得斯坦纳树问题的遗传算法中的主动信息源
遗传算法被广泛引用,以证明自然选择产生生物复杂性的力量。特别是,这种搜索算法的成功被认为表明智能设计没有科学价值。尽管遗传算法有其优点,但它并没有建立起任何类似的东西。这种算法的成功不是通过搜索算法的任何内在属性,而是通过结合来自程序员先验知识的信息源。一种用来捍卫自然选择有效性的遗传算法是托马斯的斯坦纳树算法。本文跟踪了纳入托马斯算法的各种信息来源。该算法不是从零开始创建信息,而是通过限制所考虑的解的集合、引入选择偏差来增加选择的能力以及采用有利于偶然交叉的结构来结合居民信息。托马斯的算法,远没有展示自然选择的力量,只是证明了一个智能代理,在这个例子中是一个人类程序员,拥有将成功搜索所需的信息整合到这种算法中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信