On Zero Free Regions for Derivatives of a Polynomial

IF 1 Q1 MATHEMATICS
Mohammad Hedayetullah Mir, I. Nazir, I. A. Wani
{"title":"On Zero Free Regions for Derivatives of a Polynomial","authors":"Mohammad Hedayetullah Mir, I. Nazir, I. A. Wani","doi":"10.46793/kgjmat2303.403m","DOIUrl":null,"url":null,"abstract":". Let P n denote the set of polynomials of the form p ( z ) = ( z − a ) m n − m Y k =1 ( z − z k ) , with | a | ≤ 1 and | z k | ≥ 1 for 1 ≤ k ≤ n − m. For the polynomials of the form p ( z ) = z Q n − 1 k =1 ( z − z k ) , with | z k | ≥ 1, where 1 ≤ k ≤ n − 1, Brown [2] stated the problem “Find the best constant C n such that p 0 ( z ) does not vanish in | z | < C n ”. He also conjectured in the same paper that C n = 1 n . This problem was solved by Aziz and Zarger [1]. In this paper, we obtain the results which generalizes the results of Aziz and Zarger.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2303.403m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

. Let P n denote the set of polynomials of the form p ( z ) = ( z − a ) m n − m Y k =1 ( z − z k ) , with | a | ≤ 1 and | z k | ≥ 1 for 1 ≤ k ≤ n − m. For the polynomials of the form p ( z ) = z Q n − 1 k =1 ( z − z k ) , with | z k | ≥ 1, where 1 ≤ k ≤ n − 1, Brown [2] stated the problem “Find the best constant C n such that p 0 ( z ) does not vanish in | z | < C n ”. He also conjectured in the same paper that C n = 1 n . This problem was solved by Aziz and Zarger [1]. In this paper, we obtain the results which generalizes the results of Aziz and Zarger.
多项式导数的零自由区域
. set of polynomials》让P n denote表格P (z) = z(−a) k = 1 Y m n−−z z (k)里,用| a | k≤1和z | |≥1为≤k≤n−m . polynomials》为P (z) = z表格Q n−1 k = k(−z z z)里,用| k |≥1,哪里≤k≤n−1,布朗[2]stated《百康斯坦”问题找到C n P 0 (z)确实如此,那不是其为消失在| z | < C n”。他还把它和C = 1的纸放在同一个纸上。这个问题已经解决了,阿齐兹和扎格[1]。在这篇文章中,我们向阿齐兹和扎格尔的继任者报告了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信