Estimates for Initial Coefficients of Certain Subclasses of Bi-Close-to-Convex Analytic Functions

IF 1 Q1 MATHEMATICS
S. Barik, A. Mishra
{"title":"Estimates for Initial Coefficients of Certain Subclasses of Bi-Close-to-Convex Analytic Functions","authors":"S. Barik, A. Mishra","doi":"10.46793/kgjmat2303.387b","DOIUrl":null,"url":null,"abstract":"In this paper we find bounds on the modulii of the second, third and fourth Taylor-Maclaurin’s coefficients for functions in a subclass of bi-close-to-convex analytic functions, which includes the class studied by Srivastava et al. as particular case. Our estimates on the second and third coefficients improve upon earlier bounds. The result on the fourth coefficient is new. Our bounds are obtained by refining well known estimates for the initial coefficients of the Carthéodory functions.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2303.387b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we find bounds on the modulii of the second, third and fourth Taylor-Maclaurin’s coefficients for functions in a subclass of bi-close-to-convex analytic functions, which includes the class studied by Srivastava et al. as particular case. Our estimates on the second and third coefficients improve upon earlier bounds. The result on the fourth coefficient is new. Our bounds are obtained by refining well known estimates for the initial coefficients of the Carthéodory functions.
双近凸解析函数若干子类初始系数的估计
本文给出了双近凸解析函数的一个子类中函数的第二、三、四阶泰勒-麦克劳林系数模量的界,其中包括Srivastava等人所研究的一类。我们对第二个和第三个系数的估计改进了先前的界限。第四个系数的结果是新的。我们的边界是通过精炼已知的carth odory函数初始系数的估计得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信