L ∞−ASYMPTOTIC BEHAVIOR OF A FINITE ELEMENT METHOD FOR A SYSTEM OF PARABOLIC QUASI-VARIATIONAL INEQUALITIES WITH NONLINEAR SOURCE TERMS

IF 1 Q1 MATHEMATICS
D. C. Benchettah
{"title":"L ∞−ASYMPTOTIC BEHAVIOR OF A FINITE ELEMENT METHOD FOR A SYSTEM OF PARABOLIC QUASI-VARIATIONAL INEQUALITIES WITH NONLINEAR SOURCE TERMS","authors":"D. C. Benchettah","doi":"10.46793/kgjmat2303.347b","DOIUrl":null,"url":null,"abstract":"This paper is an extension and a generalization of the previous results, cf. [3, 6, 8, 11]. It is devoted to studying the finite element approximation of the non coercive system of parabolic quasi-variational inequalities related to the management of energy production problem. Specifically, we prove optimal L∞-asymptotic behavior of the system of evolutionary quasi-variational inequalities with nonlinear source terms using the finite element spatial approximation and the subsolutions method","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2303.347b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is an extension and a generalization of the previous results, cf. [3, 6, 8, 11]. It is devoted to studying the finite element approximation of the non coercive system of parabolic quasi-variational inequalities related to the management of energy production problem. Specifically, we prove optimal L∞-asymptotic behavior of the system of evolutionary quasi-variational inequalities with nonlinear source terms using the finite element spatial approximation and the subsolutions method
一类具有非线性源项的抛物型拟变分不等式系统的有限元法的L∞−渐近性质
本文是对前人结果的推广和推广,参见[3,6,8,11]。主要研究与能源生产管理问题有关的抛物型拟变分不等式非强制方程组的有限元逼近问题。具体地说,我们利用有限元空间逼近和子解方法证明了具有非线性源项的演化拟变分不等式系统的最优L∞-渐近性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信