Extreme and moderate solutions of nonoscillatory second order half-linear differential equations

IF 0.7 4区 数学 Q2 MATHEMATICS
J. Jaros, T. Kusano, T. Tanigawa
{"title":"Extreme and moderate solutions of nonoscillatory\nsecond order half-linear differential equations","authors":"J. Jaros, T. Kusano, T. Tanigawa","doi":"10.4064/ap201216-12-8","DOIUrl":null,"url":null,"abstract":". An existence and asymptotic theory is built for second order half-linear differential equations of the form where α > 0 is constant and p ( t ) and q ( t ) are positive continuous functions on [ a, ∞ ) , in which a crucial role is played by a pair of the generalized Riccati differential equations associated with (A). An essential part of the theory is the construction of nonoscillatory solutions x ( t ) of (A) enjoying explicit exponential-integral representations in terms of solutions u ( t ) of (R1) or in terms of solutions v ( t ) of (R2).","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"12 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap201216-12-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. An existence and asymptotic theory is built for second order half-linear differential equations of the form where α > 0 is constant and p ( t ) and q ( t ) are positive continuous functions on [ a, ∞ ) , in which a crucial role is played by a pair of the generalized Riccati differential equations associated with (A). An essential part of the theory is the construction of nonoscillatory solutions x ( t ) of (A) enjoying explicit exponential-integral representations in terms of solutions u ( t ) of (R1) or in terms of solutions v ( t ) of (R2).
非振荡二阶半线性微分方程的极值解和中等解
. 建立了二阶半线性微分方程的存在性和渐近性理论,其中α >为常数,p (t)和q (t)是[a,∞)上的正连续函数。其中与(a)相关的一对广义里卡蒂微分方程起着至关重要的作用。该理论的一个重要部分是(a)的非振荡解x (t)的构造,它具有(R1)的解u (t)或(R2)的解v (t)的显式指数积分表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信