Arc-meromorphous functions

Pub Date : 2020-01-01 DOI:10.4064/ap200517-7-8
W. Kucharz, K. Kurdyka
{"title":"Arc-meromorphous functions","authors":"W. Kucharz, K. Kurdyka","doi":"10.4064/ap200517-7-8","DOIUrl":null,"url":null,"abstract":"We introduce arc-meromorphous functions, which are continuous functions representable as quotients of semialgebraic arc-analytic functions, and develop the theory of arc-meromorphous sheaves on Nash manifolds. Our main results are Cartan’s theorems A and B for quasi-coherent arc-meromorphous sheaves. 0. Introduction. In this note, building on the theory of arc-analytic functions initiated by the second named author [16], we introduce arcmeromorphous functions and arc-meromorphous sheaves on Nash manifolds. Arc-meromorphous functions are analogs for regulous and Nash regulous functions studied in [8] and [13], respectively. The term “regulous” is derived from “regular” and “continuous”, whereas “meromorphous” comes from “meromorphic” and “continuous”. Our theory of arc-meromorphous sheaves is developed in parallel to the theories of regulous sheaves [8] (see also the recent survey [14]) and Nash regulous sheaves [13]. It is established in [8] and [13] that Cartan’s theorems A and B hold for quasi-coherent regulous sheaves and quasi-coherent Nash regulous sheaves. Our main results are Theorem 2.4 (Cartan’s theorem A) and Theorem 2.5 (Cartan’s theorem B) for quasi-coherent arc-meromorphous sheaves. Recall that Cartan’s theorems A and B fail for coherent real algebraic sheaves [6, Example 12.1.5], [7, Theorem 1] and coherent Nash sheaves [11]. We refer to [6] for the general theory of semialgebraic sets, semialgebraic functions, and related concepts. Recall that a Nash manifold is an analytic submanifold X ⊂ Rn, for some n, which is also a semialgebraic set. A realvalued function on X is called a Nash function if it is both analytic and semialgebraic. By [22, Theorem VI.2.1, Remark VI.2.11], each Nash manifold is Nash isomorphic to a nonsingular algebraic set in Rm, for some m. 2020 Mathematics Subject Classification: 14P10, 14P20, 32B10, 58A07.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap200517-7-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce arc-meromorphous functions, which are continuous functions representable as quotients of semialgebraic arc-analytic functions, and develop the theory of arc-meromorphous sheaves on Nash manifolds. Our main results are Cartan’s theorems A and B for quasi-coherent arc-meromorphous sheaves. 0. Introduction. In this note, building on the theory of arc-analytic functions initiated by the second named author [16], we introduce arcmeromorphous functions and arc-meromorphous sheaves on Nash manifolds. Arc-meromorphous functions are analogs for regulous and Nash regulous functions studied in [8] and [13], respectively. The term “regulous” is derived from “regular” and “continuous”, whereas “meromorphous” comes from “meromorphic” and “continuous”. Our theory of arc-meromorphous sheaves is developed in parallel to the theories of regulous sheaves [8] (see also the recent survey [14]) and Nash regulous sheaves [13]. It is established in [8] and [13] that Cartan’s theorems A and B hold for quasi-coherent regulous sheaves and quasi-coherent Nash regulous sheaves. Our main results are Theorem 2.4 (Cartan’s theorem A) and Theorem 2.5 (Cartan’s theorem B) for quasi-coherent arc-meromorphous sheaves. Recall that Cartan’s theorems A and B fail for coherent real algebraic sheaves [6, Example 12.1.5], [7, Theorem 1] and coherent Nash sheaves [11]. We refer to [6] for the general theory of semialgebraic sets, semialgebraic functions, and related concepts. Recall that a Nash manifold is an analytic submanifold X ⊂ Rn, for some n, which is also a semialgebraic set. A realvalued function on X is called a Nash function if it is both analytic and semialgebraic. By [22, Theorem VI.2.1, Remark VI.2.11], each Nash manifold is Nash isomorphic to a nonsingular algebraic set in Rm, for some m. 2020 Mathematics Subject Classification: 14P10, 14P20, 32B10, 58A07.
分享
查看原文
Arc-meromorphous功能
引入可表示为半代数弧解析函数商的连续函数——弧亚纯函数,建立了纳什流形上的弧亚纯束理论。我们的主要结果是拟相干弧-亚纯轴的Cartan定理A和定理B。0. 介绍。本文在第二作者[16]提出的弧解析函数理论的基础上,引入了纳什流形上的弧亚纯函数和弧亚纯束。弧-亚纯函数是[8]和[13]中研究的正则函数和纳什正则函数的类似物。“正则”一词来源于“正则”和“连续”,而“亚纯”一词来源于“亚纯”和“连续”。我们的弧-亚纯轮系理论是与规则轮系理论[8](参见最近的研究[14])和纳什规则轮系[13]并行发展的。在[8]和[13]中建立了Cartan定理A和B对拟相干正则束和拟相干纳什正则束的成立。我们的主要结果是关于拟相干弧-亚纯束的定理2.4 (Cartan定理A)和定理2.5 (Cartan定理B)。回想一下,Cartan定理A和B对于相干实代数捆[6,例12.1.5],[7,定理1]和相干纳什捆[11]不成立。关于半代数集、半代数函数和相关概念的一般理论,我们参考[6]。回想一下,纳什流形是一个解析子流形X∧Rn,对于某个n,它也是一个半代数集。如果X上的重值函数既是解析函数又是半代数函数,则称为纳什函数。根据[22,定理VI.2.1,注释VI.2.11],每个纳什流形对于Rm中的一个非奇异代数集是纳什同构的。2020数学主题分类:14P10, 14P20, 32B10, 58A07。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信