Qualitative analysis of the Oregonator model

IF 0.7 4区 数学 Q2 MATHEMATICS
Jun Zhou
{"title":"Qualitative analysis of the Oregonator model","authors":"Jun Zhou","doi":"10.4064/ap200321-18-8","DOIUrl":null,"url":null,"abstract":". In this paper, we consider the properties of the solutions for the Oregonator system, which is the mathematical model of the celebrated Belousov–Zhabotinski˘ı reaction. We first investigate the dynamics of the model, and some fundamental analytic properties such as attractive rectangle and stability of the constant solution are estab-lished. Then, we consider the steady states of the model, and the existence and nonexistence of nonconstant steady states under various conditions on the parameters and the size of the reactor.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap200321-18-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we consider the properties of the solutions for the Oregonator system, which is the mathematical model of the celebrated Belousov–Zhabotinski˘ı reaction. We first investigate the dynamics of the model, and some fundamental analytic properties such as attractive rectangle and stability of the constant solution are estab-lished. Then, we consider the steady states of the model, and the existence and nonexistence of nonconstant steady states under various conditions on the parameters and the size of the reactor.
俄勒冈模型的定性分析
. 在本文中,我们考虑了Oregonator系统解的性质,该系统是著名的Belousov-Zhabotinski × ×反应的数学模型。首先研究了该模型的动力学性质,建立了吸引矩形和常解稳定性等基本解析性质。然后,我们考虑了模型的稳态,以及在反应器参数和尺寸的不同条件下,非常稳态的存在和不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信