{"title":"On the lattice of polynomials with integer coefficients: successive minima in $L_2(0,1)$","authors":"W. Banaszczyk","doi":"10.4064/ap190413-20-10","DOIUrl":null,"url":null,"abstract":". Let P Z n be the additive subgroup of the real Hilbert space L 2 (0 , 1) consisting of polynomials of order ≤ n with integer coefficients. We may treat P Z n as a lattice in ( n + 1) -dimensional Euclidean space; let λ i ( P Z n ) ( 1 ≤ i ≤ n + 1 ) be the corresponding successive minima. We give rather precise estimates of λ i ( P Z n ) for i (cid:38) 23 n .","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap190413-20-10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
. Let P Z n be the additive subgroup of the real Hilbert space L 2 (0 , 1) consisting of polynomials of order ≤ n with integer coefficients. We may treat P Z n as a lattice in ( n + 1) -dimensional Euclidean space; let λ i ( P Z n ) ( 1 ≤ i ≤ n + 1 ) be the corresponding successive minima. We give rather precise estimates of λ i ( P Z n ) for i (cid:38) 23 n .
. 让Z P n成为《additive subgroup 2》真正的希尔伯特空间L (0, 1) consisting of polynomials of秩序和整数n≤coefficients。我们可以在(n + 1) -次欧几里得空间中解决P - n的问题;让λi Z P (n)(1≤i≤n + 1) be the corresponding successive函数。我们给的很精确的保守λi n P (Z) for一世(cid): 38) 23 n。
期刊介绍:
Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba.
The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.