{"title":"Vertical Electrical Sounding (VES) investigation for road failure along Mekelle – Abi-Adi road segment, northern Ethiopia","authors":"G. Mebrahtu, Solomun Atsbaha, Berihu Abadi Berhe","doi":"10.4314/mejs.v13i1.7","DOIUrl":null,"url":null,"abstract":"Roads constructed along the mountainous terrains of Ethiopia are susceptible to landslides mostly during rainy season. Mekelle – Abi Adi road is one of the economically important road corridors that connects many towns with Mekelle city. However, the asphalt road segment is heavily affected by quasi-translational type of landslide which hinders traffic flow of the area. Vertical electrical sounding (VES) method was applied to investigate subsurface geology of the road failure along Mekelle – Abi-Adi asphalt road, northern Ethiopia. The geo-electric section result revealed that the shallow subsurface geology of the site is characterized by four distinct geological formations, from top to bottom are: shale, shale-limestone intercalation, limestone and shale-gypsum units. The subgrade of the failed road section is shale unit which is overlain by jointed sandstone unit. The sandstone unit serves as a recharge zone to the bottom shale layer by percolating water via sub-base fill materials which in turn blocks vertical percolation and promote seepage force to the overlying soil mass. Hence, the road failure in the study area seems to be caused due to the development of pore water pressure in the shale layer which soaked water during heavy rainfall. The recommended remedial method for the road failure is re-designing of the affected route from chainage 48 km+850 m to 49 km+250 m towards the northwest of the study area and excavates the top 6 m shale unit.","PeriodicalId":18948,"journal":{"name":"Momona Ethiopian Journal of Science","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Momona Ethiopian Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/mejs.v13i1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Roads constructed along the mountainous terrains of Ethiopia are susceptible to landslides mostly during rainy season. Mekelle – Abi Adi road is one of the economically important road corridors that connects many towns with Mekelle city. However, the asphalt road segment is heavily affected by quasi-translational type of landslide which hinders traffic flow of the area. Vertical electrical sounding (VES) method was applied to investigate subsurface geology of the road failure along Mekelle – Abi-Adi asphalt road, northern Ethiopia. The geo-electric section result revealed that the shallow subsurface geology of the site is characterized by four distinct geological formations, from top to bottom are: shale, shale-limestone intercalation, limestone and shale-gypsum units. The subgrade of the failed road section is shale unit which is overlain by jointed sandstone unit. The sandstone unit serves as a recharge zone to the bottom shale layer by percolating water via sub-base fill materials which in turn blocks vertical percolation and promote seepage force to the overlying soil mass. Hence, the road failure in the study area seems to be caused due to the development of pore water pressure in the shale layer which soaked water during heavy rainfall. The recommended remedial method for the road failure is re-designing of the affected route from chainage 48 km+850 m to 49 km+250 m towards the northwest of the study area and excavates the top 6 m shale unit.