{"title":"Implementation of Acoustic Analogies in OpenFOAM for Computation of Sound Fields","authors":"J. Schmalz, W. Kowalczyk","doi":"10.4236/OJA.2015.52004","DOIUrl":null,"url":null,"abstract":"In this work the turbulence based acoustic sources and the corresponding wave propagation of fluctuating flow values in incompressible fluid flows are considered. Lighthill’s and Curle’s acoustic analogies are implemented in the open source computational fluid dynamics framework OpenFOAM. The main objective of this work is to visualize and localize the dominated sound sources and the resulting values of fluctuating pressure values within the computation domain representing the acoustical near field. This is all done on one mesh and during the iterative computation of the transient fluid flow. Finally the flow field and acoustical results of different simulation cases are presented and the properties of the shown method are discussed.","PeriodicalId":63563,"journal":{"name":"声学期刊(英文)","volume":"05 1","pages":"29-44"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"声学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJA.2015.52004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this work the turbulence based acoustic sources and the corresponding wave propagation of fluctuating flow values in incompressible fluid flows are considered. Lighthill’s and Curle’s acoustic analogies are implemented in the open source computational fluid dynamics framework OpenFOAM. The main objective of this work is to visualize and localize the dominated sound sources and the resulting values of fluctuating pressure values within the computation domain representing the acoustical near field. This is all done on one mesh and during the iterative computation of the transient fluid flow. Finally the flow field and acoustical results of different simulation cases are presented and the properties of the shown method are discussed.