Lucas Theisen, Sandra Raquel Kunst, Ana Caroline Viero Bianchin, Fernando Dal Pont Morisso, C. T. Oliveira
{"title":"Anodização porosa de titânio em eletrólito livre de HF","authors":"Lucas Theisen, Sandra Raquel Kunst, Ana Caroline Viero Bianchin, Fernando Dal Pont Morisso, C. T. Oliveira","doi":"10.4322/2176-1523.20222746","DOIUrl":null,"url":null,"abstract":"The critical factors that determine the application of titanium and its alloys for biomedical implants are its mechanical and chemical properties, followed by excellent corrosion resistance and biocompatibility. Thus, anodization has been used to favor the formation of porous surfaces that improve the osseointegration process in titanium, seeking properties that can stimulate the growth of newly formed bone. However, this process uses electrolytes based on hydrofluoric acid (HF), which is harmful to the health of the patient receiving the prosthesis. The aim of this study was to obtain a porous surface of titanium in F-free electrolytes. In this way, titanium samples were anodized in sulfuric acid electrolytes with and without hydrogen peroxide addition, in varying concentrations, in order to obtain a porous surface of titanium oxide. The growth of oxides was evaluated by means of anodizing transients and the samples obtained were analyzed by SEM. The samples showed the formation of porous oxides of nanometric dimensions. Therefore, this study shows an alternative for the formation of pores, without the use of HF-based electrolyte, with potential application in biomaterials.","PeriodicalId":53327,"journal":{"name":"Tecnologia em Metalurgia Materiais e Mineracao","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnologia em Metalurgia Materiais e Mineracao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4322/2176-1523.20222746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The critical factors that determine the application of titanium and its alloys for biomedical implants are its mechanical and chemical properties, followed by excellent corrosion resistance and biocompatibility. Thus, anodization has been used to favor the formation of porous surfaces that improve the osseointegration process in titanium, seeking properties that can stimulate the growth of newly formed bone. However, this process uses electrolytes based on hydrofluoric acid (HF), which is harmful to the health of the patient receiving the prosthesis. The aim of this study was to obtain a porous surface of titanium in F-free electrolytes. In this way, titanium samples were anodized in sulfuric acid electrolytes with and without hydrogen peroxide addition, in varying concentrations, in order to obtain a porous surface of titanium oxide. The growth of oxides was evaluated by means of anodizing transients and the samples obtained were analyzed by SEM. The samples showed the formation of porous oxides of nanometric dimensions. Therefore, this study shows an alternative for the formation of pores, without the use of HF-based electrolyte, with potential application in biomaterials.