Mechanical properties prediction of dual phase steels using machine learning

T. B. Tavares, F. P. Finamor, Julio Cezar de Sousa Zorzi
{"title":"Mechanical properties prediction of dual phase steels using machine learning","authors":"T. B. Tavares, F. P. Finamor, Julio Cezar de Sousa Zorzi","doi":"10.4322/2176-1523.20222595","DOIUrl":null,"url":null,"abstract":"The use of artificial intelligence techniques, with the increase of data generation capacity and the advancement of computational resources, has enabled the industries to develop and improve products without compromising laboratory and industrial resources. In this paper, a supervised machine learning (ML) based technique was used to predict the yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of dual phase steels with minimum tensile strengths of 590 and 780 MPa. The computational analysis was done from industrial data information containing the chemical composition and the thermomechanical processing parameters of the referred materials. The proposed ML model reached values of coefficient of determination above 0.94, with an accuracy of ±30 MPa for YS and UTS, and ±3% for EL. These results demonstrated the rationality and reliability of the tested method, allowing its application in future research works and in decision making that aim to optimize the steels industrial processing parameters.","PeriodicalId":53327,"journal":{"name":"Tecnologia em Metalurgia Materiais e Mineracao","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnologia em Metalurgia Materiais e Mineracao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4322/2176-1523.20222595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of artificial intelligence techniques, with the increase of data generation capacity and the advancement of computational resources, has enabled the industries to develop and improve products without compromising laboratory and industrial resources. In this paper, a supervised machine learning (ML) based technique was used to predict the yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of dual phase steels with minimum tensile strengths of 590 and 780 MPa. The computational analysis was done from industrial data information containing the chemical composition and the thermomechanical processing parameters of the referred materials. The proposed ML model reached values of coefficient of determination above 0.94, with an accuracy of ±30 MPa for YS and UTS, and ±3% for EL. These results demonstrated the rationality and reliability of the tested method, allowing its application in future research works and in decision making that aim to optimize the steels industrial processing parameters.
双相钢力学性能的机器学习预测
随着数据生成能力的增加和计算资源的进步,人工智能技术的使用使行业能够在不牺牲实验室和工业资源的情况下开发和改进产品。本文采用基于监督机器学习(ML)的技术,预测了最小抗拉强度为590和780 MPa的双相钢的屈服强度(YS)、极限抗拉强度(UTS)和伸长率(EL)。计算分析是根据工业数据信息进行的,其中包含了参考材料的化学成分和热力加工参数。所提出的ML模型的决定系数达到0.94以上,YS和UTS的精度为±30 MPa, EL的精度为±3%。这些结果证明了测试方法的合理性和可靠性,为今后的研究工作和优化钢铁工业加工参数的决策提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
40
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信