Random Lochs’ Theorem

IF 0.7 3区 数学 Q2 MATHEMATICS
Charlene Kalle, E. Verbitskiy, B. Zeegers
{"title":"Random Lochs’ Theorem","authors":"Charlene Kalle, E. Verbitskiy, B. Zeegers","doi":"10.4064/sm211028-24-2","DOIUrl":null,"url":null,"abstract":"Abstract. In 1964 Lochs proved a theorem on the number of continued fraction digits of a real number x that can be determined from just knowing its first n decimal digits. In 2001 this result was generalised to a dynamical systems setting by Dajani and Fieldsteel, where it compares sizes of cylinder sets for different transformations. In this article we prove a version of Lochs’ Theorem for random dynamical systems as well as a corresponding Central Limit Theorem. The main ingredient for the proof is an estimate on the asymptotic size of the cylinder sets of the random system in terms of the fiber entropy. To compute this entropy we provide a random version of Rokhlin’s formula for entropy.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":"53 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm211028-24-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract. In 1964 Lochs proved a theorem on the number of continued fraction digits of a real number x that can be determined from just knowing its first n decimal digits. In 2001 this result was generalised to a dynamical systems setting by Dajani and Fieldsteel, where it compares sizes of cylinder sets for different transformations. In this article we prove a version of Lochs’ Theorem for random dynamical systems as well as a corresponding Central Limit Theorem. The main ingredient for the proof is an estimate on the asymptotic size of the cylinder sets of the random system in terms of the fiber entropy. To compute this entropy we provide a random version of Rokhlin’s formula for entropy.
随机洛克定理
摘要1964年,Lochs证明了一个关于实数x的连分式位数的定理,这个定理可以通过知道它的前n位小数来确定。2001年,Dajani和Fieldsteel将这一结果推广到一个动力系统设置中,比较了不同变换下气缸组的大小。本文证明了随机动力系统的Lochs定理的一个版本以及相应的中心极限定理。证明的主要成分是用纤维熵估计随机系统的圆柱集的渐近大小。为了计算这个熵,我们提供了Rokhlin熵公式的一个随机版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信