{"title":"RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES","authors":"Dongho Byeon, Keunyoung Jeong, N. Kim","doi":"10.4134/JKMS.J190867","DOIUrl":null,"url":null,"abstract":". Let K be a number field and L a finite abelian extension of K . Let E be an elliptic curve defined over K . The restriction of scalars Res LK E decomposes (up to isogeny) into abelian varieties over K Res LK E ∼ (cid:77) F ∈ S A F , where S is the set of cyclic extensions of K in L . It is known that if L is a quadratic extension, then A L is the quadratic twist of E . In this paper, we consider the case that K is a number field containing a primitive third root of unity, L = K ( 3 √ D ) is the cyclic cubic extension of K for some D ∈ K × / ( K × ) 3 , E = E a : y 2 = x 3 + a is an elliptic curve with j invariant 0 defined over K , and E Da : y 2 = x 3 + aD 2 is the cubic twist of E a . In this case, we prove A L is isogenous over K to E Da × E D 2 a and a property of the Selmer rank of A L , which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"58 1","pages":"123-132"},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190867","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
. Let K be a number field and L a finite abelian extension of K . Let E be an elliptic curve defined over K . The restriction of scalars Res LK E decomposes (up to isogeny) into abelian varieties over K Res LK E ∼ (cid:77) F ∈ S A F , where S is the set of cyclic extensions of K in L . It is known that if L is a quadratic extension, then A L is the quadratic twist of E . In this paper, we consider the case that K is a number field containing a primitive third root of unity, L = K ( 3 √ D ) is the cyclic cubic extension of K for some D ∈ K × / ( K × ) 3 , E = E a : y 2 = x 3 + a is an elliptic curve with j invariant 0 defined over K , and E Da : y 2 = x 3 + aD 2 is the cubic twist of E a . In this case, we prove A L is isogenous over K to E Da × E D 2 a and a property of the Selmer rank of A L , which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.
. 设K是一个数字域,L是K的有限阿贝尔扩展。设E是一条定义在K上的椭圆曲线。标量的限制Res LK E分解为K上的阿贝尔变体Res LK E ~ (cid:77) F∈S A F,其中S是K在L中的循环扩展的集合。已知,如果L是二次扩展,则L是E的二次扭转。在这篇文章中,我们考虑的K是一个数字字段包含一个原始的第三根的团结,L = K(√3 D)的循环立方扩展的K D∈K / (K)××3,E = E: 2 y = x 3 + 0是一个j的椭圆曲线不变的定义/ K,和E Da: y = x 3 +广告2是立方扭曲的E。在这种情况下,我们证明了A L在K到E Da × E d2 A上是等齐次的,并证明了A L的Selmer秩的一个性质,它是Mazur和Rubin关于二次旋的定理的三次类似。
期刊介绍:
This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).