A natural topological manifold structure of phase tropical hypersurfaces

Pub Date : 2021-01-01 DOI:10.4134/JKMS.J200132
Young Rock Kim, Mounir Nisse
{"title":"A natural topological manifold structure of phase tropical hypersurfaces","authors":"Young Rock Kim, Mounir Nisse","doi":"10.4134/JKMS.J200132","DOIUrl":null,"url":null,"abstract":"First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (C∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin’s decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J200132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (C∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin’s decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.
分享
查看原文
相位热带超曲面的自然拓扑流形结构
首先,我们根据(C *)n中的光滑复代数超曲面的退化数据定义了相位热带超曲面。其次,我们证明了复超平面与它们的退化同胚,称为相位热带超平面。更一般地说,利用Mikhalkin分解成光滑代数超曲面对,我们证明了具有光滑热带化的相位热带超曲面自然是一个拓扑流形。此外,我们还证明了相热带超曲面与辛流形自然同胚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信