The exponential growth and decay properties for solutions to elliptic equations in unbounded cylinders

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190836
Lidan Wang, Lihe Wang, Chunqin Zhou
{"title":"The exponential growth and decay properties for solutions to elliptic equations in unbounded cylinders","authors":"Lidan Wang, Lihe Wang, Chunqin Zhou","doi":"10.4134/JKMS.J190836","DOIUrl":null,"url":null,"abstract":"In this paper, we classify all solutions bounded from below to uniformly elliptic equations of second order in the form of Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u(x) = f(x) or Lu(x) = Di(aij(x) Dju(x)) + bi(x)Diu(x) + c(x)u(x) = f(x) in unbounded cylinders. After establishing that the Aleksandrov maximum principle and boundary Harnack inequality hold for bounded solutions, we show that all solutions bounded from below are linear combinations of solutions, which are sums of two special solutions that exponential growth at one end and exponential decay at the another end, and a bounded solution that corresponds to the inhomogeneous term f of the equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we classify all solutions bounded from below to uniformly elliptic equations of second order in the form of Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u(x) = f(x) or Lu(x) = Di(aij(x) Dju(x)) + bi(x)Diu(x) + c(x)u(x) = f(x) in unbounded cylinders. After establishing that the Aleksandrov maximum principle and boundary Harnack inequality hold for bounded solutions, we show that all solutions bounded from below are linear combinations of solutions, which are sums of two special solutions that exponential growth at one end and exponential decay at the another end, and a bounded solution that corresponds to the inhomogeneous term f of the equation.
分享
查看原文
无界圆柱体中椭圆方程解的指数增长和衰减性质
在无界柱面中,我们将自下有界的二阶一致椭圆方程的所有解分类为Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u(x) = f(x)或Lu(x) = Di(aij(x) Dju(x)) + bi(x)Diu(x) + c(x)u(x) = f(x)。在建立了Aleksandrov极大原理和边界Harnack不等式对有界解成立之后,我们证明了所有从下起有界的解都是解的线性组合,它们是一端是指数增长,另一端是指数衰减的两个特殊解的和,并且有界解对应于方程的非齐次项f。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信