BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

IF 0.7 4区 数学 Q2 MATHEMATICS
I. Abid
{"title":"BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS","authors":"I. Abid","doi":"10.4134/JKMS.J190646","DOIUrl":null,"url":null,"abstract":"We study bifurcation for the following fractional Schrödinger equation  (−∆)su+ V (x)u = λ f(u) in Ω u > 0 in Ω u = 0 inRn \\ Ω where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of Rn, (−∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is lim t→+∞ f(t) t = a ∈ (0,+∞). We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.","PeriodicalId":49993,"journal":{"name":"Journal of the Korean Mathematical Society","volume":"57 1","pages":"1347-1372"},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190646","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study bifurcation for the following fractional Schrödinger equation  (−∆)su+ V (x)u = λ f(u) in Ω u > 0 in Ω u = 0 inRn \ Ω where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of Rn, (−∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is lim t→+∞ f(t) t = a ∈ (0,+∞). We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.
一类拟线性分数阶schrÖdinger方程的分岔问题
我们研究了以下分数阶Schrödinger方程(−∆)su+ V (x)u = λ f(u)在Ω u > 0在Ω u = 0 inRn \ Ω中的分岔,其中0 < s < 1, n > 2s, Ω是Rn的有界光滑域,(−∆)s是s阶分数阶拉普拉斯算子,V是满足适当假设的势能,λ是一个正实参数。非线性项f是一个正的非降凸函数,其渐近线性为lim t→+∞f(t) t = a∈(0,+∞)。讨论了正解的存在性、唯一性和稳定性,证明了极值解的存在性和唯一性。考虑了一类拟线性分数阶Schrödinger方程的分岔问题的类型,并建立了解在分岔点附近的渐近性态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal endeavors to publish significant research of broad interests in pure and applied mathematics. One volume is published each year, and each volume consists of six issues (January, March, May, July, September, November).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信