BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

Pub Date : 2020-01-01 DOI:10.4134/JKMS.J190646
I. Abid
{"title":"BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS","authors":"I. Abid","doi":"10.4134/JKMS.J190646","DOIUrl":null,"url":null,"abstract":"We study bifurcation for the following fractional Schrödinger equation  (−∆)su+ V (x)u = λ f(u) in Ω u > 0 in Ω u = 0 inRn \\ Ω where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of Rn, (−∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is lim t→+∞ f(t) t = a ∈ (0,+∞). We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study bifurcation for the following fractional Schrödinger equation  (−∆)su+ V (x)u = λ f(u) in Ω u > 0 in Ω u = 0 inRn \ Ω where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of Rn, (−∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is lim t→+∞ f(t) t = a ∈ (0,+∞). We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.
分享
查看原文
一类拟线性分数阶schrÖdinger方程的分岔问题
我们研究了以下分数阶Schrödinger方程(−∆)su+ V (x)u = λ f(u)在Ω u > 0在Ω u = 0 inRn \ Ω中的分岔,其中0 < s < 1, n > 2s, Ω是Rn的有界光滑域,(−∆)s是s阶分数阶拉普拉斯算子,V是满足适当假设的势能,λ是一个正实参数。非线性项f是一个正的非降凸函数,其渐近线性为lim t→+∞f(t) t = a∈(0,+∞)。讨论了正解的存在性、唯一性和稳定性,证明了极值解的存在性和唯一性。考虑了一类拟线性分数阶Schrödinger方程的分岔问题的类型,并建立了解在分岔点附近的渐近性态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信